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Preliminaries

* Please download and install HyPhy: http://hyphy.org/wiki/Download

 Either command line (terminal) version or the GUI version (Mac or
Windows)

- General user questions and feedback: https://github.com/veg/hyphy/issues

- Datamonkey web-app: http://www.datamonkey.org and http://
test.datamonkey.org

- Test datasets and practical instructions: bit.ly/veme-2016-data
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Outline

 Brief background and examples of - Different types of selection analyses
natural selection enabled by dN/dS, told by examples
from West Nile virus and HIV and

« dN/dS as a tool to measure the analogies from image analysis

action of natural selection, explained
using the first counting method for - Gene-wide selection (BUSTED)
estimating dN/dS (Nei-Gojobori,

1986) and its extensions.  Lineage-specific selection

(aBSREL)
« Codon substitution models — the Site-lovel eni _ ot
basis of modern (1998-) dN/dS ite-level episodic selection

estimation approaches (MEME)

 Site-level pervasive selection
(FUBAR)

« Relaxed or intensified selection
(RELAX)

- Confounding processes (synonymous
rate variation, recombination)



A bit of trivia

* The theory of natural selection » Unsurprisingly, his peers failed
was first proposed by ...Patrick to discover his ideas in such an
Matthew obscure source, and his work

had no impact on the
subsequent, more developed,
work of Darwin and Wallace
(1859).

« Matthew seemed to regard the
idea as more or less self-evident
and not in need of further
development.

Do not emulate Patrick

» In a stunning example of how Matthew.

not to communicate science, he
published his ideas in
appendices B and F of his book
“On Naval Timber and
Arboriculture” (1831).
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Natural Selection

- Mutation, recombination and other processes introduce variation
into genomes of organisms

* The fithess of an organism describes how well it can survive/grow/
function/replicate in a given environment, or how well it can pass
on its genetic material to future generations

* Any particular mutation can be

* Neutral: no or little change in fitness (the majority of genetic variation falls
into this class according to the neutral theory)

* Deleterious: reduced fithess

- Adaptive: increased fithess

« The same mutation can have different fithess costs in different environments
(fitness landscape), and different genetic backgrounds (epistasis)
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—xample: MHC-restricted CTL killing of infected cells

- Cytotoxic T-lympocytes effect cell-
mediated immune response

- Foreign (e.g., viral) proteins are cleaved by svtans b T ol o
the proteosome, transported by TAP and pmpocyes @Y ¥ p
loaded onto the MHC Class 1 molecule. [z i
Viaw Virally \"\:‘.\
infected cell 3
+ MHC Class 1 presents a restricted [ G g’ R
. . I Y oy / 5, ~ |
polypeptide (epitope) on the surface of the | |
C el I . T .' Ty ﬂ - ;
- A CD8+ cell binds to presented foreign

Viral protein -~

peptides via a T cell receptor (TCR) and
initiates infected cell apoptosis.
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MHC Class 1
Molecules

* Present linear foreign peptides
which are most commonly 9 or
10 aminoacids long

* Anchor sites (2 and 9) are
usually important for binding
and recognition

- Mutations which alter the
peptide can hinder or prevent
CTL response activation

Antigen Binding Site
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Rapid SIV sequence evolution in macagues in
response to CTL-driven selection

SIV: the only animal model of HIV (rhesus macaques)

Experimental infection with MHC-matched strain of SIV

Virus sequenced from a sample 2 weeks post infection
 Only variation was in an epitope recognized by the MHC

* CTL escape
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Before selection

After selection

Time

Final population

Resistance level

0000000

Low High

http://en.wikipedia.org/wiki/File:Antibiotic_resistance.svg
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Key drivers of adaptation in pathogens

- Zoonoses and transmission to new hosts (both species and individuals)
* Immune selection (CTL, innate, antibody)

* Development of drug resistance

* Virulence/transmissibility

* Host/pathogen arms-races, e.g. host antiviral factors

* Most of the time, most of the viral genome is conserved

BACKGROUND /



—volution of Coding Sequences

RNA .
Coding DNA o 575700 Codon translation
sequence ::4_’4 >Transcr|pt|on/ > 0 amino-acids

Assembly

INTRODUCING DN/DS 1



—volution of Coding Sequences

. :: RNA -
Coding DNA 1752 o 575700 Codon translation
SeqUENCe Transcription/ fo amino-acids

Assembly

- Proper unit of evolution is a triplet of nucleotides — a codon
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—volution of Coding Sequences
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—volution of Coding Sequences

:: RNA .
Coding DNA 1752 o 575700 Codon translation
SeqUENCe Transcription/ fo amino-acids

Assembly

- Proper unit of evolution is a triplet of nucleotides — a codon
- Mutation happens at the DNA level

- Selection happens (by and large) at the protein level
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—volution of Coding Sequences

:: RNA .
Coding DNA 1752 o 575700 Codon translation
SeqUENCe Transcription/ fo amino-acids

Assembly

- Proper unit of evolution is a triplet of nucleotides — a codon
- Mutation happens at the DNA level
- Selection happens (by and large) at the protein level

« Synonymous (protein sequence unchanged) and non-synonymous (protein
sequence changed) substitutions are fundamentally different
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Conservation

Measles, rinderpest, and peste-de-petite ruminant viruses nucleoprotein.

Nucleotides Aminoacids
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Diversification

An antigenic site in H3N2 IAV hemagglutinin

F

Nucleotides Am/acio’s
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Molecular signatures of selection

- Because synonymous substitutions do not alter the protein, we often posit
that they are neutral

- The rate of accumulation of synonymous substitutions (dS) gives the
neutral background

« We can compare the rate of accumulation of non-synonymous
substitutions (dN), which alter the protein sequence, to classify the nature

of the evolutionary process

number of fixed synonymous mutations
proportion of random mutations that are synonymous

dS ~

number of fixed non-synonymous mutations
proportion of random mutations that are non-synonymous

INTRODUCING DN/DS 4
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Evolutionary Modes

Positive Selection dS < dN or
(Diversifying) w = dN/dS > 1

Negative Selection dS>dNorw < 1

Neutral Evolution dS =dNorw = 1

INTRODUCING DN/DS 5



—stimating dS and dN

Consider two aligned homologous sequences

ACA ATA ATC TTT AAT CAA
T / / F N Q
ACA ATA ACC TTT AAC CAA
T / T F N Q

INTRODUCING DN/DS 6



—stimating dS and dN

Consider two aligned homologous sequences

ACA ATA ATC TTT AAT CAA

T / / F N Q
ACA ATA ACC TTT AAC CAA
T / T F N Q

Can one claim that dN/dS = 1, because there is one
Synonymous and one non-synonymous substitution?

INTRODUCING DN/DS 6



Universal genetic code

This genetic code has 61 sense (non-termination) codons

Substitution types

Synonymous Non-synonymous To a stop codon
Transitions Transversions Total | Transitions Transversions Total | Total
1st position: 8 ) 8 140 26 166 9
2nd position: ) ) ) 148 28 176 7
3rd position: 58 68 126 2 48 50 14
Total 66 68 134 290 102 392 23

- Approximately 3:1 (392 N/ 134 S) ratio when mutations are generated and
fixed at random

* Non-random distribution over codon positions
* All second position mutations are non-synonymous

* Most synonymous mutations are confined to the third position

INTRODUCING DN/DS 7



Neutral expectation

« A random mutation is ~3 times more likely to be non-synonymous that
synonymous, depending on the variety of factors, such as codon composition,
transition/transversion ratios, etc.

- We need to estimate the proportion of random mutations that are synonymous,
and use it as a reference to compute dS.

- In early literature, these quantities were codified as synonymous and non-
synonymous “sites” and/or mutational opportunity.

- As a very crude approximation (assuming that third positions ~ synonymous),
each codon has 1 synonymous and 2 non-synonymous sites

INTRODUCING DN/DS 8



Computing synonymous and non-synonymous
sites for GAA (Glutamic Acid)

G A A
Site/Change to 1 9 3
AAA * *
A Lysine
C CAA GCA GAC
Glutamine Alanine Aspartic Acid
G * GGA GAG
Glycine Glutamic Acid
T TAA GTA GAT
Valine Aspartic Acid
Synonymous
sites 0 0 1/3
Non-synonymous
ynomy 1 1 2/3

sites

INTRODUCING DN/DS 9



Computing synonymous and non-synonymous
sites for GAA (Glutamic Acid)

AMINOACID CODONS REDUNDANCY
. ALANINE GC* 4
SIte/Change tO 1 2 3 CYSTEINE TGC, TGT 2
ASPARTIC ACID GAC,GAT 2
A FAVRVA * * GLUTAMIC ACID GAA.GAG 2
LySine PHENYLALANINE TTC,TTT 2
GLYCINE GG* a4
C CAA GCA GAC HISTIDINE CAC,CAT p2]
Glutamine Alanine Aspartic Acid ISOLEUCINE — s
LYSINE AAA,AAG 2
G " GGA GAG LEUCINE CT*,TTA,TTG 6

. . . T
Glycine Glutamic Acid METHIONINE ATE ‘
ASPARGINE y-V-\oW-V-N ) 2
T TAA GTA GAT PROLINE ccC* 4
. . . GLUTAMINE CAA,CAG p2]
SERINE AGC,AGT,TC* 6
SynonymOUS O O .1/3 THREONINE AC* 4
SiteS VALINE GT* a4
TRYPTOPHAN TGG 1
Non_synonymous TYROSINE TAC, TAT 2
) 1 1 2/3 STOP TAA, TAG, TGA 3

sites
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Computing synonymous and non-synonymous
sites for GAA (Glutamic Acid)

AMINOACID CODONS REDUNDANCY
. ALANINE GC* 4
SIte/Change tO 1 2 3 CYSTEINE TGC, TGT 2
ASPARTIC ACID GAC,GAT 2
A VR * * GLUTAMIC ACID GAA,GAG 2
LySine PHENYLALANINE TTC,TTT 2
C GC G C GLYCINE GG* a4
AA A A HISTIDINE CAC,CAT p2]
C Glutamine Alanine Aspartic Acid ISOLEUCINE — s
LYSINE AAA,AAG 2
G « GGA GAG LEUCINE CT*TTA,TTG 6

. . . T
Glycine Glutamic Acid METHIONINE ATE ‘
ASPARGINE y-V-\oW-V-N ) 2
T TAA GTA GAT PROLINE ccC* 4
. . . GLUTAMINE CAA,CAG p2]
SERINE AGC,AGT,TC* 6
SynonymOUS O O .1/3 THREONINE AC* 4
SiteS VALINE GT* |
TRYPTOPHAN TGG 1
Non_synonymous TYROSINE TAC, TAT 2
) 1 1 2/3 STOP TAA, TAG, TGA 3

sites

8/3 non-synonymous sites
1/3 synonymous sites
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Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions

~4 , OOO Citations M. Nei and T. Gojobori

Mol. Biol. Evol. 3 418--426 (1986)

Nei-Gojobori dN/dS estimate (NG86)

« For each codon C we define ES (C) and EN (C) - the numbers of synonymous
and non-synonymous sites of a codon

- e.0.,ES(GAA) = 1/3, EN(GAA) = 8/3.

- May also define them as fractions of substitutions that do not lead to stop
codons,

. e.g.,, ES(GAA) = 1/3, EN(GAA) = 7/3.

« The sum of ES and EN over all codons in a sequence gives an estimate of
expected synonymous and non-synonymous sites in a sequence.

- For two sequences (the target of the original method), we average ES (C) and
EN (C) at each site.

- EN/ES is thus the expected ratio of non-synonymous to synonymous
substitutions counts under neutral evolution

INTRODUCING DN/DS 10



NG86 example

Seq1 ACA ATA ATC TIT AAT CAA

Syn 1 2/3  2/3 1/3 1/3 1/3
NonSyn 2 7/3 7/3 8/3 8/3 7/3
Seq2 ACA ATA ACC TIT AAC CAA
Syn 1 2/3 1 1/3 1/3 1/3
NonSyn 2 7/3 2 8/3 8/3 7/3
q(:cg Syn 1 °/3  5/6  1/3  1/3  1/3
= NonSyn 2 7/3 13/6  8/3 8/3 7/3
ES = 3%, EN = 14%: under neutrality, would expect the ratio

of non-synonymous to synonymous substitutions of EN/ES ~ 4



NG86 example

The observed N/ S ratio (1. 0) is lower than the expected EN/ES ratio (4. 05)

The ratio of the ratios (N:S) / (EN:ES) yields dN/dS=1/4.05~0.25

This ratio quantifies the excess or paucity of non-synonymous substitutions
and is near one for neutrally evolving sequences/sites

Because there are fewer non-synonymous substitutions than expected,
we conclude that most non-synonymous mutations are removed by natural
selection, I.e., the sequences are under negative selection.

INTRODUCING DN/DS 12



NG86 example

* How reliable is the inference based on only 6 codons?
« Obtain sampling variance via bootstrap (or by limiting approximations)

* In this case, dN/dS is significantly lessthan 1.0 (p = 0.01)

Bootstrapped distribution of dN/AS
Weight Count = 100
Mean = 0.207385
Median = 0.166687
03 Observed Variance = 0.0490168
Std.Dev = 0.221397
cov = 1.06757
Sum = 20.7385
0.2 Sg. sum = 9.15351
Skewness = 0.266313
Kurtosis = 33.381
Min =0
o 2.5% =0
97.5% = 0.741176
Max =1
0
0 0.1 02 04 ¢'I'\"."¢'I?"' 0.6 0.7 0.8 09
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NG86 limitations: multiple substitutions

- How many synonymous and how many non-synonymous substitutions does
it take to replace CCA with CAG?

- Assume the shortest path (minimum of 2 substitutions)
- Option 1: cCA (Proline)= CAA (Histidine) = CAG (Glutamine)

« Option 2: CCA (Proline) = CCG (Proline) — CAG (Glutamine)

« Average over the paths: 0.5 synonymous and 1.5 non-synonymous
substitutions

- Intuitively, paths should not be equiprobable, e.g., because it should be more
expensive to route evolution through (presumably) suboptimal intermediate
aminoacids.

INTRODUCING DN/DS 14



NG86 limitations: underestimation of
substitution counts for higher divergence levels

Substitutions = 7
p=0.4
ATGAAAGT CGA

T G
AG T AGAGTGA

/\

Multiple hits Reversion

Estimated
0.7
0.6
0.5
04
0.3
0.2

0.1
$

0

0.2 0.3 (9&! O.g Ox; 0]%
orrect

- Analogous to how p-distance underestimates true divergence due to multiple hits.

- Simulated 100 replicates of 1000 nucleotide long sequences for various divergence levels

(substitutions/site)

- Plotted ‘true’ divergence vs that estimated by p-distance.

- Even for divergence of 0.25 (1/4 sites have mutation on average), p-distance already
significantly underestimates the true level: 0.2125 (0.19-0.241 95% range)

- Underestimation becomes progressively worse for larger divergence levels.

INTRODUCING DN/DS 15




NG86 limitations: ignoring phylogenies

=

Asp(CHICKEN HONGKONG 1997)

Asp (DUCK_HONGKONG_1997)

Glu (DUCK_SHANDONG 2004) Glu

Asp N G1u
Glu(DUCK_GUANGZHOU_2005)

Glu

Glu(CHICKEN GUANGDONG_2005)

Fig. 1.1. Effect of phylogeny on estimating synonymous and nonsynonymous sub-
stitution counts in a dataset of Influenza A /H5N1 haemagglutinin sequences. Using
the maximum likelihood tree on the left, the observed variation can be parsimo-
niously explained with one nonsynonymous substitution along the darker branch,
whereas the star tree on the right involves at least two.
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NG86 limitations: averaging across all sites in a gene

Different sites in a gene will be subject to different selective forces

A gene-wide measure of selection is going to average these effects
* Most sites in most genes will be maintained by purifying selection

 Positively selected sites are of great biological interest, because they point to
how a particular gene can respond to selective pressures

* Negatively selected sites are also of interest, because they point to functional
constraint, and could be used to guide drug or vaccine design

* Must develop methods that are able to disentangle the contributions of
iIndividual sites

INTRODUCING DN/DS 17



A method for detecting positive selection at single amino acid sites

A50 citations [v. suzki and 1. Gojobori

Mol Biol Evol 16 1315-1328 (1999)

Suzuki-Gojobori (SG99): the penultimate extension of NG86

Uses a tree to compute dN/dS at a given site

1. Reconstruct ancestral sequences by nucleotide-level parsimony

2. Compute EN and ES using labeled branches; define pe = ES/EN
3. Compute s and NS for each site (minimum evolution)

4. Estimate the probability that the number of synonymous substitutions S is
unusually low (positive selection) or unusually high (negative selection), using
the binomial distribution given pe from step 2.

INTRODUCING DN/DS 18



ACA(719)
T ACA(136)

GTA(135)
GAA(105R)

. GAA(529)

ACA(317)
GAA(6767)

—11 GAA(6760)
GAA(9939)
ACA(159)

. ACA(256)
GTA(113)

ATA(822)

D GTA

GAA

GAA

Fig. 1.6. An illustration of SLAC method, applied to a small HIV-1 envelope V3
loop alignment. Sequence names are shown in parentheses. Likelihood state an-
cestral reconstruction is shown at internal nodes. The parsimonious count yields 0
synonymous and 9 non-synonymous substitutions (highlighted with a dark shade)
at that site. Based on the codon composition of the site and branch lengths (not
shown), the expected proportion of synonymous substitutions is p. = 0.25. An
extended binomial distribution on 9 substitutions with the probability of success
of 0.25, the probability of observing 0 synonymous substitutions is 0.07, hence the
site is borderline significant for positive selection.
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A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution
rates, with application to the chloroplast genome

S. V. Muse and B. S. Gaut 725 Citations

Mol Biol Evol 11 715-724 (1994)

A codon-based model of nucleotide substitution for protein-

Codon-substitution models  go s 1620 citations

Mol Biol Evol 11 725--736 (1994)

* In 1994, first tractable mechanistic evolutionary models for codon sequences
were proposed by Muse and Gaut (MG94), and, independently, by Goldman
and Yang (GY94) [in the same issue of MBE, back to back]

- Markov models of codon substitution provide a powerful framework for
estimating substitution rates from coding sequence data, as they

e encode our mechanistic understanding of the evolutionary process,
® enable one to compute phylogenetic likelihood,
e permit Hypothesis testing or Bayesian inference,

e systematically account for confounding processes (unequal base
frequencies, nucleotide substitution biases, etc.),

e afford many opportunities for extension and refinement (still happening
today).

CODON SUBSTITUTION MODELS 1



Rate matrix for an MG-style codon model

X R, mdt , one-step, synonymous substitution,
(Rate) y y (dt) = { BReymdt , one-step, non-synonymous substitution,
0 ., multi-step.

X,Y = AAA...TTT (excluding stop codons),

Tt - frequency of the target nucleotide.

Example substitutions:

AAC—AAT (one step, synonymous - Aspargine) R
CAC—GAC (one step, non-synonymous - Histidine to Aspartic Acid) BR.
AAC—GTC (multi-step).

a (syn. rate) and 3 (hon-syn. rate)
are the key quantities for all selection analyses

CODON SUBSTITUTION MODELS 2




Computing the transition probabilities

 In order to recover transition probabilities T (t) from the rate matrix Q, one
computes the matrix exponential T(t) = exp (Qt, same as with standard
nucleotide models, e.g. HKY85 or GTR

- Because the computational complexity of matrix exponentiation scales as the
cube of the matrix dimension, codon based models require roughly (61/4)3

~ 3500 more operations than nucleotide models

* This explains why codon probabilistic models were not introduced until the
1990s, even though they are straightforward extensions of 4x4 nucleotide

models

CODON SUBSTITUTION MODELS 3



Multiple substitutions

The model assumes that point mutations alter one nucleotide at a time, hence
most of the instantaneous rates (3134/3761 or 84.2% in the case of the

universal genetic code) are 0.

* This restriction, however, does not mean that the model disallows any
substitutions that involve multiple nucleotides (e.g., ACT=AGG).

* Such substitutions must simply be realized via several single nucleotide
steps, €. ACT=AGT—=AGG

« Infactthe (i,]) elementof T(t) = exp (Qt) sums the probabilities of all
such possible pathways of duration t, including reversions

« Compare this to the naive NG86 parsimony approach.

CODON SUBSTITUTION MODELS 4



Alignment-wide estimates

» Using standard MLE approaches it is straightforward to obtain point
estimates of dN/dS := B/«

- Can also easily test whether or not dN/dS > 1, or < 1 using the likelihood
ratio test (LRT)

- Codon models also support the concepts of synonymous and non-
synonymous distances between sequences using standard properties of
Markov processes (exponentially distributed waiting times)

Elsubs| = Z TiGii,  E[subs] = E[syn] + Elnonsyn] = Z TiQs; — Z TiQos .
i
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Two example datasets

+ West Nile Virus NS3 protein * HIV-1 transmission pair
* An interesting case study of how - Partial env sequences from
positive selection detection two epidemiologically linked
methods lead to testable individuals
hypotheses for function
discovery

* An example of multiple

selective environments
 Brault et al 2007, A single (source, recipient,

positively selected West Nile viral transmission)
mutation confers increased
virogenesis in American crows




HIV-1 env
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Information “content” of the alignments

WNV NS3 HIV-1 env

Sequences 19 16

Codons 619 288

Tree Length
MG94 model, subs/site 3.32 0.20




WNV NS3

Model Log L

Null -7/668.7
Alternative -6413.5

HIV-1 env
Model Log L
Null -2078.3

Alternative -2078.2

PRACTICAL SELECTION ANALYSES 4

49
50

40
41

dN/dS LRT p-value
1

0.009 25104 O
Very strongly conserved

dN/dS LRT p-value

1.128 0.2 ~0.6

Not significantly different from neutral



Mean gene-wide dN/dS estimates

 Are not the way to go, except when you have very small (2-3 sequence)
datasets

* For example:

* The humoral arm of the immune system mounts a potent defense against
viral infections

» Existing successful vaccines are based on raising a neutralizing antibody
(nAb) response to the pathogen

* No simple host genetic basis (epitopes) of the specificity of neutralizing
antibody responses is known

* Need to measure these responses




Neutralization curves from an individual with early
HIV infection

 Neutralization can be measured by
the serum dilution needed to Month 0 Plasma Month & Plasma Month 12 Plasma

reduce viral replication by 50% i
(typically presented as the inverse ggﬁ
of the titer) S
0:! i : r— : 1 0k : 4
° AlthOugh Variable between 100 10° 10° 10° 107 10'10° 10° 10° 10° 102 10' 10° 10° 10¢ 100 102 10!

individuals, the rate of escape
from neutralizing antibodies can
be very high during acute/early
HIV infection

J
1
i
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»
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Month 12 Virus
% inhibition
S - T -
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°.8.5.8.8.8

(=]
L4 | 30 L

10 105 10* 10° 102 10' 10° 105 10* 10° 102 10' 10° 105 104 10° 102 10

» Sera are effective at neutralizing
earlier viruses, but significantly
less effective at neutralizing
contemporaneous viruses

Titer (1/plasma dilution)

* The immune system loses the
arms race




Amino acid substitutions in HIV-1 env accumulate
faster during rapid escape

Patient 01-0127, rapid escape Patient 01-0083, slow escape
(a) (b)

vON W
9 @

dN or dS (%)
dN or dS (%)
i

1.05

0 200 400 600 800 1000 0 200 400 600 800 1000
Time (days) Time (days)



But upon closer look, this pattern is highly variable
both across a gene and through time.
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Selection inference as image processing

Branches




Selection inference as image processing

>ites
Evolutionary process along a single
branch at a sinale site



Forget about the color

-

Branches

Q Intensity/brightness Color

| Type of evolutionary/
* Evolutionary rate (dN/dS) fgr?ction/property c?/]ange



Evolution is largely unolbserved and noisy
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Evolution is largely unobserved and noisy (another replicate
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o High local variability

o Stable global patterns, easily discernible

# Desired resolution (branch-site) is not attainable

# Global (and some local) patterns should be
inferable and testable

# Statistical inference draws power from sample (and
effect) size, need to aggregate data to gain power

PRACTICAL SELECTION ANALYSES 14



Gene-wide selection (mean dN/dS

Branches

|s the average color sufficiently “bright”

|s there evidence that gene-wide dN/dS > 1? Aggregate data over the entire
alignment, by inferring a single dN/dS parameter from all sites and branches




- Simple
- single rate parameter
- relatively compute-light
- Very robust to local variation
- Sample size ~ sites x branches
- Very low power

* MOost genes are on average
conserved

- No resolution
- if selection occurred, how muc

of the gene was involved, and
when did it happen

- Rate variation model is definitely
misspecified




Gene-wide selection
random effects over sites and branches [BUSTED]

Branches

|s there enough image area that is sufficiently bright; allow each pixel to be one of 3
colors, chosen adaptively, e.g. to minimize perceptual differences

[BUSTED]: each branch-site combination is a drawn from a 3-bin (dS,dN) distribution. The
distribution is estimated from the entire alignment. Tests if dN/dS>1 for some branch/site pairs in

the alignment

(GENE-WIDE SELECTION [BUSTED] 1



Gene-wide selection
random effects over sites and branches [BUSTED]

Branches

|s there enough image area that is sufficiently bright; allow each pixel to be one of 3
colors, chosen adaptively, e.g. to minimize perceptual differences

[BUSTED]: each branch-site combination is a drawn from a 3-bin (dS,dN) distribution. The
distribution is estimated from the entire alignment. Tests if dN/dS>1 for some branch/site pairs in

the alignment

(GENE-WIDE SELECTION [BUSTED] 1



Gene-wide selection analysis using a branch-site
method (BUSTED), HIV-1 env

Gene-wide dN/dS distribution w1 = 0.627 (71%) w2=0.649 (27%) wz = 106 (2%)
p-value for selection (Hp: w3z =1) <107
Log L (no variation) -2078.20

e -2039.99
(branch-site; 4 addt’l parameters)

Proportion of sites
100%

90%
80%
70%
60%
50%
40%
30% -
20% -

10%

0% —
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0.00001 0.0001 0.001 0.01 0.1 1 10 100

(GENE-WIDE SELECTION [BUSTED] 2 Murrell et al | Mol. Biol. Evol | 32(5) | 1365-1371



Gene-wide selection analysis using a branch-site
method (BUSTED), WN NS3

Gene-wide dN/ds distribution w1 = 0.004 (99.3%) w2 = (n/a) ws= 1.86 (0.73%)
p-value for selection (Ho: w3 =1) 0.54
Log L (no variation) -6413.50

e -6396.18
(branch-site; 4 addt’l parameters)

Proportion of sites
100% —

90% -
80%
70%
60%
50%
40%
30% -
20%

10%

0%

T T TTT T T T T T I 7T T T TTIT T T TTImT T T TTTm T T T TTI
0.00001 0.0001 0.001 0.01 0.1 1 10 100

(GENE-WIDE SELECTION [BUSTED] 3 Murrell et al | Mol. Biol. Evol | 32(5) | 1365-1371



BUSTED analysis

+ West Nile Virus NS3 protein * HIV-1 transmission pair

* Marginal evidence of weak * Very strong evidence of
episodic selection (AN/dS ~ 2) strong episodic diversification
on a small proportion of sites (dN/dS ~ 100) on a small
(~1%) proportion of sites (2%)

« The rest of the gene is very - The rest of the gene evolves
strongly conserved (dN/dS = with weak purifying selection
0.004) (dN/dS = 0.6-0.7)

GENE-WIDE SELECTION [BUSTED] 4 Murrell et al | Mol. Biol. Evol | 32(5) | 1365-1371



Where does the power come from for BUSTED?
An analysis of ~9,000 curated gene alignments from selectome.unil. ch
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SBUSTED site-level inference

Because BUSTED is a random-effects method, it pools information across
multiple sites and branches to gain power

The cost to this pooling is lack of site-level resolution, i.e., it is not
immediately obvious which sites and/or branches drive the signal

Standard ways to extract individual site contributions to the overall signal is to
perform a post-hoc analysis, such as empirical Bayes, or “category loading”

For BUSTED, “category loading” is faster and experimentally better

GENE-WIDE SELECTION [BUSTED] 6 Murrell et al | Mol. Biol. Evol | 32(5) | 13651371



WN NS3
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Which branches are under selection?

Branch 1

A § EER =
= g

3-rate fit
I BBl EEE B BN EEEEEEFEE R B B

For each image row, is there a significant proportion of bright pixels, once the column has been reduced to N colors only?

[aBSREL]: at a given branch, each site is a draw from an N-bin (dN/dS) distribution, which is inferred from all data for the branch.
Test if there is a proportion of sites with dN/dS > 1 (LRT). N is derived adaptively from the data.

BRANCH-LEVEL SELECTION [ABSREL] 1



Less Is More: An Adaptive Branch-Site Random Effects Model
for Efficient Detection of Episodic Diversifying Selection

Martin D. Smith,' Joel O. Wertheim,? Steven Weaver,” Ben Murrell,> Konrad Scheffler,>> and

Sergei L. Kosakovsky Pond*?
Mol. Biol. Evol. 32(5):1342-1353

Best-in-class power

Able to detect episodes of selection, not just selection on
average at a branch

Does not make unrealistic assumptions for tractability,
improves statistical behavior

Sample size is ~sites, branch level rate estimates could be
imprecise

Cannot reliably estimate which individual sites are subject to
selection

Exploratory testing of all branches leads to loss of power for
large data sets (multiple test correction)

BRANCH-LEVEL SELECTION [ABSREL] 2



Less Is More: An Adaptive Branch-Site Random Effects Model
for Efficient Detection of Episodic Diversifying Selection

Martin D. Smith,’ Joel O. Wertheim,” Steven Weaver,” Ben Murrell,”> Konrad Scheffler,”* and

Sergei L. Kosakovsky Pond*?
Mol. Biol. Evol. 32(5):1342-1353

Uses a computationally simple trick to compute the
Ikelihood of data, efficiently summing over all
possible assignments of rate classes to branches

These cannot be factored into products, unlike sites,
because evolution across tree branches is correlated, i.e. a
change in the process along one branch affects many
others.

Uses a greedy (but well-performing) step-up
procedure to decide how many rate classes to
allocate to each branch, prior to testing for selection

Perform an evolutionary complexity analysis first (the
adaptive part), then run selection tests.

BRANCH-LEVEL SELECTION [ABSREL] 3



HIV-1 env

0
0.01

0.1

0.20l 0.40l 0.60l 0.80l 1 .0l 1 .2l 1 .4l 1 .6l 1 .8l
R20_239 Name B LRT Test p-value Uncorrected p-value w distribution over sites
R 20_24 5 Node1 48.8763 0.0000 0.0000 :; : :::) (::::l )
R20 240 Node16 20.9741 0.0002 0.0000 wy = 0.956 (98%)
w2 = 10000 (1.6%)
R20_238 D20 233 18.9576 0.0006 0.0000 wy = 1.00 (98%)
wz = 10000 (2.4%)
R2G_242
Transmission 1 R20_247
R20.243
P20_244
D20_235
D20_236
»D20_232
D20_234
D20_237
= D20_230
L D20_231
D20 _23c
ATree
w rate # of % of % of tree # under
classes branches branches length selection
1 21 81% 1.8% 0
2 5 19% 2.8% 3

BRANCH-LEVEL SELECTION [ABSREL] 4



WN NS3

0.01
0.1
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HNY1999

I NY99_EQHS
NY99_FLAMINGO

MEX03

IS_98

PAHO01

AST99

KN3829

ITALY_1998_EQUINE

PAANOO1

RO97_50

VLG_4

ETHAN4766

CHIN_O1

EG101

KUNCG

RABENSBURG_ISOLATE

BLRT Test p-value Uncorrected p-value

1.0000 1.0000

w distribution over sites

wy = 0.00536 (99%)
wp = 6.95 (0.85%)

test not run

RABENSBURG_ISOLA
WNFCG

SPU116_89
£Tree
w rate # of % of % of tree # under
classes branches branches length selection
1 32 91% 35% 0
2 3 8.6% 60% 0

BRANCH-LEVEL SELECTION [ABSREL] 5



aBSREL analysis

- West Nile Virus NS3 protein

« 91% branches can be explained
with simple (single dN/dS) models

« 3 branches (9%, 60% of tree
length) have evidence of multiple
dN/dS rate classes over sites, but
none with significant proportions
of sites with dN/dS > 1

HIV-1 transmission pair

81% branches can be explained
with simple (single dN/dS) models

5 branches (19%, 90+% of tree

length) have evidence of multiple
dN/dS rate classes over sites

3 branches have small (1-7%), but
statistically significant (p<0.05,
multiple testing corrected)
proportions of sites with dN/dS >
1, including the transmission
branch



Correlates of evolutionary complexity

An analysis of ~9,000 curated gene alignments from selectome.unil.ch
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Unanticipated effects of bad modeling
assumptions

* Models that fail to account for significant shifts in selective pressures through
lineages also significantly underestimate branch lengths

* An instructive example is long-range molecular dating of pathogens, where
recent isolates (e.g., 30-50 years of sampling) are used to extrapolate the
date when a particular pathogen had emerged

 This creates the situation when terminal branches in the tree have relatively
high dN/dS (within-host level evolution), which deep interior branches have
very low dN/dS (long term conservation)

BRANCH-LEVEL SELECTION [ABSREL] 8



- Using models that do not vary
selection pressure across lineages A GTR+T,
yields a patently false “too young”
estimate for the origin of measles
(about 600 years ago)

 This estimate is refuted by clear
historical records that suggest that
measles is at least 1,500-5,000 =
years old

B Lineage+Dual (two rate)

e This includes a treatise by a Persian
physician Rhazes about differential
diagnosis of measles and smallpox
published circa 600 AD.

- Same patterns found for
coronaviruses, ebola, avian
iInfluenza and herpesvirus

0.2 substitutions per site

BRANCH-LEVEL SELECTION [ABSREL] 9 Wertheim and Pond (2011) Mol Biol Evol. 28(12):3355-65




Which sites are under selection?

Murrell et al 2012

Branches
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‘ from that site only. Test if there is a proportion of branches with dN>dS (LRT)

SITE-LEVEL SELECTION [MEME] 1

For each image column, is there a significant proportion of bright pixels, once the column has

[IMEME]: at a given site, each branch is a draw from a 2-bin (dS, dN) distribution, which is inferred
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Murrell et al 2012

Which sites are under selection? Site 1

Branches

been reduced to 2 colors only?

[IMEME]: at a given site, each branch is a draw from a 2-bin (dS, dN) distribution, which is inferred

a For each image column, is there a significant proportion of bright pixels, once the column has
‘ from that site only. Test if there is a proportion of branches with dN>dS (LRT)

SITE-LEVEL SELECTION [MEME] 1



Detecting Individual Sites Subject to Episodic
Diversifying Selection

Ben Murrell™?, Joel O. Wertheim?, Sasha Moola?, Thomas Weighill?, Konrad Scheffler>?,
Sergei L. Kosakovsky Pond**

@ PLoS Genetics | www.plosgenetics.org 1 July 2012 | Volume 8 | Issue 7 | 1002764

Best-in-class power

Able to detect episodes of selection, not just selection on
average at a site

Embarrassingly parallel (farm out each site), so runs
reasonably fast

Sample size is ~sequences, site level rate estimates
imprecise

Cannot estimate which individual branches are subject
to selection

Does not scale especially well with the number of
sequences

SITE-LEVEL SELECTION [MEME] 2
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Detecting Individual Sites Subject to Episodic
Diversifying Selection

Ben Murrell'?, Joel O. Wertheim?, Sasha Moola?, Thomas Weighill?>, Konrad Scheffler®?,
Sergei L. Kosakovsky Pond**

@ PLoS Genetics | www.plosgenetics.org
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HIV-1 env

Found 11 sites with evidence of episodic diversifying selection ( 0.1 significance level Retabulate )

This summary table reports the distribution of synonymous (a) and non-synonymous () substitution rates over sites inferred
by the MEME model, where the proportion of branches with B>a is significantly greater than 0. p-value is derived using a

mixture of x? distributions, and g-values are obtained using Il el N, which controls the false discovery rate under
the strict neutral null (likely to be conservative).

- + q- Branch snte
T I O I O I

0.943201 773.518 0.0567992 0.0317833 [Display]

0.779355 60.0702 0.220645 0.0688644 [Display]

0.78381 72.3626 0.21619 0.0458125 [Display]

0.895791 10000 0.104209 0.0350278 [Display]

0.874576 59.5745 0.125424 0.0525324 [Difplay]

272

282 0 0 le-09 10.8217 1 0.0881541 1 [Disblay]
0Ly EBF
Rzo_za%mo
R20_245
R20_240
R20_238
R20_242
R20_241
R20_243
R20_244
D20_233
D20_235
_CD20_234
, D20_230
——D20_231

SITE-LEVEL SELECTION [MEME] 4



WN NS3

Found 3 sites with evidence of episodic diversifying selection ( 0.1 significance level Retabulate )

This summary table reports the distribution of synonymous (a) and non-synonymous (B) substitution rates over sites inferred
by the MEME model, where the proportion of branches with B>a is significantly greater than 0. p-value is derived using a

mixture of x? distributions, and q-values are obtained using KLl s, which controls the false discovery rate under
the strict neutral null (likely to be conservative).
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Site 557

96% of branches with a=0.28, 3=0
4% of branches with a=0.28, =171

NY99_FLAMINGO
HNY1999
99_EQHS

SITE-LEVEL SELECTION [MEME] 5



MEME results

+ West Nile Virus NS3 protein * HIV-1 transmission pair
- Three sites, (including 249) with 11 sites with significant
significant evidence of episodic evidence of episodic (or
(or pervasive) diversifying pervasive) diversifying selection.
selection.

SITE-LEVEL SELECTION [MEME] 6



Why MEME?

- Affords a much greater power to detect selection

-+ Mitigates the pathological effect when adding
seguences to a sample can reduce, or remove, signal
of selection

“The greater power of MEME i1ndicates that selection acting at 1ndividual sites
1s considerably more widespread than constant o models would suggest. It also
suggests that natural selection is predominantly episodic, with transient
periods of adaptive evolution masked by the prevalence of purifying or neutral
selection on other branches. We emphasize that MEME 1s not just a quantitative
improvement over existing models: for 56 sites 1n our empilrical analyses, we
obtalin qualitatively different conclusions. FEL asserts that these sites evolved
under significant purifying selection, but MEME 1s able to identify the
signature of positive selection on some branches”

SITE-LEVEL SELECTION [MEME] 7



Why MEME?

- Affords a much greater power to detect selection

- Mitigates the pathological effect when adding
seguences to a sample can reduce, or remove, signal

of selection

“Although a previous analysis of 38 vertebrate rhodopsin sequences found no
sites under selection at posterior probability >95%, the same authors found 7
selected sites in the subset of 11 squirrelfish sequences, and 2 selected sites
when the subset of 28 fish sequences was analyzed. These results run counter to
the expectation that more data should provide greater power to detect selection.
MEME, on the other hand, [typically] detects more selected sites when more

sequences are 1included.”

SITE-LEVEL SELECTION [MEME] 8



Analysis summary

WNV NS3 HIV-1 env
Gene-wide episodic
selection (BUSTED) No ves
Branch-level selection NG Yes, three branches,
(aBSREL) including transmission
Site-level episodic . .
selection (MEME) Yes, 3 sites Yes, 11 sites

INTERPRETING RESULTS 1



't Is not unexpected that site-level positive results can
occur when a gene-level test does not yield a positive result

- Lack of power for the global test: if the proportion of sites under selection
Is very small, a mixture-model test, like BUSTED will miss it

- Model violations: MEME supplies much more flexible distributions of dN/dS
over sites; compared to alignment-wide 3-bit BUSTED distribution

 False positives at site-level: our site-level tests have good statistical
properties, but each positive site result could be a false positive; FWER
correction would make site-level tests too conservative.

- Summary: gene-level selection tests need a minimal proportion of sites to be
under selection to be powered; site-level tests should not be used to make
iInferences about gene-level selection.

INTERPRETING RESULTS 2



However, we caution that despite obvious interest In
identifying specific branch-site combinations subject
to diversitying selection, such inference is based on
very limited data (the evolution of one codon along
one branch), and cannot be recommended for
purposes other than data exploration and result
visualization. This observation could be codified as
the “selection inference uncertainty principle’ —
one cannot simultaneously infer both the site and the
branch subject to diversifying selection. In this
manuscript [MEME], we describe how to infer the
location of sites, pooling information over branches;
poreviously [aBSREL] we have outlined a
complementary approach to find selected branches
by pooling information over sites.

Murrell et al 2012

INTERPRETING RESULTS 3



Purpose-bullt models

* It is tempting to “hack” existing tools to answer questions that they are not
designed to answer

- A recent example we tackled is a rigorous test for selection relaxation (or more
generally a difference in selective regimes) in a part of the tree, relative to the rest of
the tree

- Typical approaches have been to estimate dN/dS rations from two sets of branches,
and interpret an elevation in dN/dS as evidence of selective constraint relaxation

- Two problems with this approach

- An increase in mean dN/dS could also be caused by an intensification of
selective forces.

- Post-hoc analyses (e.g., estimate branch-level dN/dS and then compare [t-test,
etc] them as if they were observed quantities) discard a lot of information (e.g.,
variance of individual estimates), and make obviously wrong assumptions (e.g.,
estimates are uncorrelated).

RELAX 1



Testing for selective relaxation
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Partition the image into horizontal bands (a priori); compare whether or not there is visual benefit to using
separate 3-color palettes in two sets of bands instead of a single 3-color palette

[RELAX]: Compare whether or not the set of branches of interest (test set) has a significantly different dN/dS
distribution than the rest of the tree (background), fitted jointly to the entire alignment. For relaxation testing, the two
dN/dS distributions are related via a power transformation.
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Testing for selective relaxation
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Partition the image into horizontal bands (a priori); compare whether or not there is visual benefit to using
separate 3-color palettes in two sets of bands instead of a single 3-color palette

[RELAX]: Compare whether or not the set of branches of interest (test set) has a significantly different dN/dS
distribution than the rest of the tree (background), fitted jointly to the entire alignment. For relaxation testing, the two
dN/dS distributions are related via a power transformation.
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Reference Branches

Test Branches

RELAX: Detecting Relaxed Selection in a Phylogenetic

Framework

Joel O. Wertheim,*' Ben Murrell,' Martin D. Smith, Sergei L. Kosakovsky Pond,' and

!(on rad Scheffler*"?

Proportion of sites
o~
D
-5;
o~

40%

Proportion of sites

50%

10%

0.01 1
@

100

Table 1. Test for Relaxed Selection Using RELAX in Various Taxonomic Groups.
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Test for k = 1

50%
40%

10%

03 1 3.2

Taxa Gene/Genes Test Branches Reference Branches Kk P-Value
y-proteobacteria Single-copy orthologs Primary/secondary endosymbionts Free-living y-proteobacteria 0.30 < 0.0001
Primary endosymbionts Free-living y-proteobacteria 0.28 < 0.0001
Secondary endosymbionts Free-living y-proteobacteria 0.61 < 0.0001
Primary endosymbionts Secondary endosymbionts 0.56 < 0.0001
Bats SWS1 HDC echolocating and cave roosting LDC echolocating and tree 0.16 < 0.0001
(pseudogenes) roosting (functional genes)
LDC echolocating Tree roosting 1.07 0.577
M/LWS1 HDC echolocating and cave roosting LDC echolocating and tree roosting 0.70 0.495
Echolocating species Tree- and cave-roosting species 0.21 0.0005
HDC echolocating LDC echolocating 0.84 0.427
Bornavirus Nucleoprotein Endogenous viral elements Exogenous virus 0.02 < 0.0001
Daphnia pulex Mitochondrial Asexual Sexual 0.63 < 0.0001

protein-coding genes

*Estimated selection intensity.

Mol. Biol. Evol. 32(3):820-832




I_I |V enyv i= RELAX(ed selection test) summary
Test for selection relaxation (K = 0.44) was significant (p = 0.0002, LR = 14.29)

Please cite PubMed 1D undefined if you use this result in a publication, presentation, or other scientific work.
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IVE

test for difference of select]

pressures between HSX and MSM HIV-1 isolates

Another use of RELAX

e1005619
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[RELAX] assigned fewer codon sites in the MSM lineages to the positively selected category (2.6%

[2.3-2.9%] in MSM vs 5.4% [5.0-6.4%] in HSX, all confidence intervals are 95% profile likelihood
approximations), and inferred that selection on these sites was stronger in MSM (0 = 15.8 [14.4-17.5] in
MSM vs w = 9.2 [8.2-9.6] 1n HSX.
Different distributions
fitted to sets of branches
&% Model fits
Model log L # par. AlC. Time to fit Liree Branch set w4 w2 w3
Partitioned MG94xREV -83169.97 277 166895.40 3 min. 39 sec. 7.49 Reference 0.634 (100%)
Test 0.558 (100%)
General Descriptive -81843.18 538 164767.88 40 min. 10 sec. 28.38 All 0.0839 (63%) 1.00 (33%) 11.9 (3.1%)
Null -81960.41 358 164639.26 30 min. 11 sec. 26.79 Reference 0.00 (58%) 1.00 (38%) 13.0 (3.4%)
Test 0.00 (58%) 1.00 (38%) 13.0 (3.4%)
Unclassified 0.0000000750 (63%) 0.974 (36%) 15.4 (2.0%)
Alternative -81959.64 359 164639.74 9 min. 58 sec. 27.03 Reference 0.00235 (58%) 1.00 (39%) 13.3 (3.2%)
Test 0.00189 (58%) 1.00 (39%) 14.6 (3.2%)
Unclassified 0.0000000750 (629%) v 0.974 (36%) 15.5 (1.9%)
Partitioned Exploratory -81952.79 363 164634.09 1 hrs. 39 min. 27.15 Reference 0.00 (62%) 1.00 (32%) 8.88 (5.7%)
Test 0.00 (57%) 1.00 (40%) 17.5 (2.6%)
Unclassified 0.0000000750 (60%6) 0.969 (39%) 15.5 (1.8%)

Nuisance branches
explicitly modeled

Models compared by AICc
(or LRT)

PLoS Pathog. 2016 May 10;12(5):e1005619
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Sranch testing; . e
exploratory vs a priori i
L
L 20 24
+ aBSREL and BUSTED can test all lm_‘:i‘; .
branches for selection (exploratory), ngz -
or apply the test to a set of branches | joz0_234
defined a priori (e.g. defining a [

particular biological hypothesis).

* For BUSTED, a priori partitioning of
branches can increase power,

especially if selective regimes are Background Foreground
markedly different on different parts
of the tree.
» For example, BUSTED applied to the Class 1 g:g_'g; S:g’gg
HIV dataset where the transmission
branch is designated as foreground,
found a greater proportion sites under w=0.72
stronger selection on this branch that Class 2 p=0.91
the rest of the tree (8% vs 1%), and a
lower p-value.
Class 3 o001 b= 0.08

A PRIORI TESTING



Task Test Site strategy Branch ECompIexityE Effectlv.e EParaIIeIizationE Pratical # i
g ; . strategy | : sample size : sequences limit
. . Random : .
Gene-wide selection USRS R Random Effects Cffects | Fixed  {~sites x taxa SMP i ~1,000
Site-level selection Fixed Effects RECle Fixed ~ taxa MPI ~>000
. Effects ; ; ; (cluster)
Branch-level selection JEI:S:3M Random Effects| Fixed Effectsi Adaptive | ~sites | SMP/MPI i  ~1,000
Compare selective Mixed | i ~sitesx i g
regimes between sets BNV @ Random Effects: . Fixed i (branch set i SMP ~ 1,000
: Effects : : . : :
of branches ; : size) :

INTERPRETING RESULTS 4



Murrell et al 2013

FUBAR: selection testing done fast

Branches

a Average colors over sites; use a relatively large but fixed palette to approximate the image

this forms the prior distribution on rates; use empirical Bayes to obtain site-level estimates of posterior probability that

* [FUBARY]: Fix a grid of dS and dN values, use the data to sample (Bayesian MCMC) weights to individual grid points;
dN > dS

FUBAR 1



Murrell et al 2013

Branches

a Average colors over sites; use a relatively large but fixed palette to approximate the image

[FUBARY]: Fix a grid of dS and dN values, use the data to sample (Bayesian MCMC) weights to individual grid points;
this forms the prior distribution on rates; use empirical Bayes to obtain site-level estimates of posterior probability that
dN > dS

FUBAR 1



Murrell et al 2013

FUBAR: selection testing done fast |
Fixed web palette (216 colors)
g8 S ' o TN N~

Branches

a Average colors over sites; use a relatively large but fixed palette to approximate the image

this forms the prior distribution on rates; use empirical Bayes to obtain site-level estimates of posterior probability that

* [FUBARY]: Fix a grid of dS and dN values, use the data to sample (Bayesian MCMC) weights to individual grid points;
dN > dS

FUBAR 1



Murrell et al 2013

FUBAR: selection testing done fast

Fixed vvb palette (216 Colors)

. « ’

= .
~
S
L=

s Wait? How can

& Bayesian MCMC over

codon models possibly be
faster than direct
estimation?

L =T

Branches

é\"“ "‘«9\;_ e

a Average colors over sites; use a relatively large but fixed palette to approximate the image

this forms the prior distribution on rates; use empirical Bayes to obtain site-level estimates of posterior probability that

* [FUBARY]: Fix a grid of dS and dN values, use the data to sample (Bayesian MCMC) weights to individual grid points;
dN > dS

FUBAR 1



FUBAR 2

-+ The time consuming part of traditional random-

effects models is the estimation of the aliment-wide
dN/dS distribution

- Each hyper-parameter adjustment entails an

expensive phylogenetic likelihood calculation

_arger data sets —> more complex mixtures
needed to avoid smoothing, I.e., more parameters,

more evaluations, and a non-linear dependance on
data-set sizes




FUBAR 3

- With FUBAR we make the following approximations:

- Branch lengths, GTR biases etc, are estimated using simple
(nucleotide models) and held fixed

- We fix a 15x15 or 20x20 grid of (dS,dN) values a priori; the data
only inform how much weight will be allocated to each point

- Only need to evaluate the expensive codon-based phylogenetic

likelihood once for each grid point: complexity only increases
linearly with the size of the data. This step is also embarrassingly
parallel.

- Allocating weights to individual points is done using MCMC (or

Gibbs sampling, or variational Bayes); this step does not require
ANY further evaluations of the phylogenetic likelihood, i.e., its cost
does not depend on the size of the alignment



FUBAR: A Fast, Unconstrained Bayesian AppRoximation for
Inferring Selection

Ben Murrell,"** Sasha Moola,"* Amandla Mabona,"* Thomas Weighill,' Daniel Sheward,’
Sergei L. Kosakovsky Pond,® and Konrad Scheffler*"®

Mol. Biol. Evol. 30(5):1196—1205

Continuous
distributio

FUBAR 4



Fitting a small number (4) of | |
dN and dS values directly Using a FUBAR grid

with post-hoc error estimates Rate class weight
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Hepatitis E Virus Genotype 4 ORF3

data from Simon Frost and Adam Brayne
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FUBAR 6
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Fic. 2. Execution times for FEL and FUBAR as a function of the number
of codon sites (top) and number of taxa (bottom).

FUBAR is dramatically faster (and as good or better)



Table 2. Run Time Comparisons between Different Selection Detection Methods on 16 Empirical Data Sets, Sorted on the Duration of the

FUBAR Run.
Data Set Taxa Codons Mean FUBAR Run Times (Times Slower than FUBAR)
Ds'zz'sgirlc: Run (ST)'meS FEL REL PAML M2a PAML M8
Echinoderm H3 37 111 0.33 40 5.1 12.0 7.1 46.1
Flavivirus NS5 18 342 0.48 45 8.6 4.5 9.3 25.5
Drosophila adh 23 254 0.26 53 3.4 4.0 2.7 4.3
West Nile virus NS3 19 619 0.13 58 6.1 5.9 37.2 105.5
Hepatitis D virus Ag 33 196 0.29 59 4.0 33 10.1 22.4
Primate lysozyme 19 130 0.08 62 0.5 3.0 0.7 1.8
Vertebrate rhodopsin 38 330 0.34 62 12.0 4.9 8.4 18.2
Japanese encephalitis virus env 23 500 0.13 68 4.8 8.8 1.6 4.0
Mamallian f-globin 17 144 0.38 74 1.5 8.4 23 5.6
Abalone sperm lysin 25 134 0.43 78 1.9 3.9 3.7 2.3
HIV-1 vif 29 192 0.08 84 2.6 38 23 4.5
Salmonella recA 42 353 0.04 102 2.1 29 2.6 12.3
Camelid VHH 212 96 0.27 120 6.3 17.2 141.0 3111
Diatom SIT 97 300 0.54 136 10.2 5.1 21.5 19.3
Influenza A virus H3N2 HA 349 329 0.04 210 15.0 14.4 221.1 616.4
HIV-1 rt 476 335 0.08 278 15.2 144 9 p*

Note—Run times that are at least 10 times greater than those of FUBAR are italicized, and those at least 100 times greater are underlined.
*PAML reported an error regarding too many ambiguities in the data set.

FUBAR is dramatically faster (and as good or better

Purifying iiiiﬁ Positive

We reconstructed the phylogeny for 3,142
complete H3 nucleotide seqgquences
isolated from humans using FastTree 2.
The FUBAR selection analysis (which we
restricted to 10 CPUs, just as for the
timing comparisons) took one and a half
hours.

FUBAR 7



Fast site-level analysis (FUBAR): no branch to branch
variation; pervasive diversifying selection; random effects

WNV NS3

THE EXPECTED NUMBER OF FALSE POSITIVES IS 0.01 (95% CI: [0-0]).

CCoon| o] B fal_PoserorProb o] Emp-Bayes Facor| PSRF| Ner] 3D repiot

249 0.138179 1.51208 1.3739 0.988732 622.977 1.03135 144.342 [SVG)[PNG)

=HIV-1 env

THE EXPECTED NUMBER OF FALSE POSITIVES IS 0.20 (95% CI: [0-1]).

Codon Posterior Prob Emp. Bayes PSRF 3D rate
pf>a Factor plot?

161 0.401387 5.64609 5.2447 0.974565 42.7026 1.00373 576.851 [SVG)[PNG)
203 0.399165 4.27264 3.87348 0.968713 34.5068 1.00481 514.136 [SVG)[PNG)
225 0.292592 2.75072 2.45813 0.955732 24.0613 1.00959 348.105 [SVG][PNG]

FUBAR 8 Murrell et al | Mol. Biol. Evol 1 30(5) | 1196-1205



Fast site-level analysis (FUBAR): no branch to branch
variation; pervasive diversifying selection; random effects

WNV NS3

[ THE EXPECTED NUMBER OF FALSE POSITIVES IS 0.01 (95% CI: [0-0]). ]
“Codon| ol B|__-a] Poseior rob f>a] Emp.Bayes Facr| PSR Nl 3D rac plt?
249 0.138179 1.51208 1.3739 0.988732 622.977 1.03135 144.342 [SVG][PNG)
4 I

Rate class weight ats Rate class weight 0.09

03 ~ Prlor 0.1 Sl [] lolog

o | _olte posteriorts.-

‘ N L {006

Postenor mean

225 0.292592 2.75072 2.45813 0.955732 24.0613 1.00959 348.105 [SVG][PNG)
282 0.186706 2.31058 2.12387 0.982502 62.578  1.0103 332.362 [SVG)IPKG)

FUBAR 8 Murrell et al | Mol. Biol. Evol 1 30(5) | 1196-1205




FUBAR results

- West Nile Virus NS3 protein

« A single site (249, same as in
Brault et al) with significant
evidence of pervasive
diversifying selection.

FUBAR 9

* HIV-1 transmission pair

* 6 sites with significant evidence
of pervasive diversifying
selection.



Current suggested best practices.

There are lots of methods you could use to study positive selection, including about 10
developed by our group. The field is still evolving, and this is our current suggestions of
what to do with your data, depending on the question you want to answer.

Question Method Output

Is there episodic selection anywhere in Branch-site unrestricted statistical ° P-value for gene-wide selection

. . . . . « inferred dN/dS distributions
my gene (or along a set of branches test of epISOdIC diversification « a “quick and dirty” scan of sites where selection

A
known a priori)’ (BUSTED). could have operated.

Are there branches in the tree where some Adaptive branch site random * p-values for each branch

sites have been subject to diversifying ffects likelihood (aBSREL « dN/dS distributions for each branch
selection? effects likelinoo (a ) - evolutionary process complexity

Also: inferring ancient divergence times.

Are there sites in the alignment Mixed effects model of evolution  * P-values for each site _

« dN/dS distributions for each site
where some of the branches have (MEME)
experienced diversifying selection?

Are there sites which have Fast unconstrained bayesian * Posterior probabilities of selection at each site
. : e : : . « An estimate of the the gene-wide dN/dS

experiences diversifying selection analysis of selection (FUBAR) distribution
and my alignment is large?
Are parts of the tree evolving with RELAX (a test for relaxed * p-value for whether or not there is relaxed or
diff t selecti lecti intensified selection

! eren Seleclive pressures selection) - inferred dN/dS distributions for different branch
relative to other parts of the tree? sets

- more flexible distribution companions possible

INTERPRETING RESULTS 5



Recombination

- Affects a large variety of organisms, * Recombination can influence or
from viruses to mammals (e.g. gene even mislead selection detection
family evolution) methods.

* Manifests itself by incongruent - Using an incorrect tree to analyze a
phylogenetic signal segment of a recombinant analysis

can bias dS and dN estimation

* This can be exploited to detect

which sequence regions * The basic intuition is that an
recombined and which sequences iIncorrect tree will generally break
were involved up identity by descent and hence

make it appear as if more
substitutions took place than did in
reality.

CONFOUNDERS 1
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Figure 4.2: The effect of recombination on inferring diversifying selection. Reconstructed evolu-
tionary history of codon 516 of the Cache Valley Fever virus glycoprotein alignment is shown ac-
cording to GARD inferred segment phylogeny (left) or a single phylogeny inferred from the entire
alignment (right). Ignoring the confounding effect of recombination causes the number of nonsyn-
onymous substitutions to be overestimated. A fixed effects likelihood (FEL, Kosakovsky Pond and
Frost (2005)) analysis infers codon 516 to be under diversifying selection when recombination is
1ignored (p = 0.02), but not when it 1s corrected for using a partitioning approach (p = 0.28).

CONFOUNDERS 2



Accounting for recombination

* First screen the alignment to find putative non-recombinant fragments (e.g.
using GARD)

* Apply a model-based test (MEME, FUBAR) using multiple phylogenies (one
per fragment), but inferring other parameters (e.g. kappa and base
frequencies) from the entire alignment

 This has been shown to work very well on simulated and empirical data

* This is the approach does not work for analyses assuming a single tree
(BUSTED, aBSREL).

CONFOUNDERS 3



Table 4. Effect of correcting for recombination when using fixed effects

likelihood to detect positively selected sites.

Virus and gene

Positively Selected Codons

Uncorrected FEL

Corrected FEL

Cache Valley G

Canine Distemper H

Crimean Congo hemm. fever NP

Hantaan G2

Human Parainfluenza (1) HN

Influenza A (human H2N2) HA

Influenza B NA
Mumps F

Mumps HN
Newcastle disease F
Newcastle disease HN
Newcastle disease N

Newcastle disease P

Puumala NP

212,516,546,551
158, 179, 264, 444
195
None
37,91, 358, 556
87, 166, 252, 358
42,106,345,436
57, 480
399
1,4,5,7,16,18,108,516
2,54,58,228,262,284,306,471
425, 430, 466
12,56,65,174,179,188,189, 204,
208, 213,217,218,239,306,332
79

None
179, 264, 444, 548
9,195
None
91, 358
87, 147,252, 358
42,106,345,436
57, 480
None
1,5,7,16,108,493,505
2,58,228,262,284,306,471
425, 430, 462, 466
56, 65, 146, 153, 174, 179, 189,
193, 204,208, 213, 218, 261,306,332

None

Test p < 0.1 was used to classify sites as selected. Codon sites found under selection by

both methods are shown in bold.

Mol. Biol. Evol. | 23(10):1891-901 | 2006
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Synonymous rate variation

« dS = constant for all sites (assumed by many models); this assumption
appears to be nearly universally violated in biological data, due to e.g.

secondary structure, localized codon usage bias, overlapping reading frames,
etc.

» This can lead to, e.qg. incorrect identification of relaxed constraint as selection

- FUBAR and MEME fully account for dS variation; BUSTED and aBSREL
provide experimental support.

Table 1
Data Sets Analyzed for Presence of Synonymous Rate Variation
MG9%4 X REV MG94 X REV Dual

Nonsynonymous GDD 3 GDD 3 X 3
Data Reference Sequences Codons log L Tree Length log L Tree Length P Value AAIC
Sperm lysin (Yang and Swanson 2002) 25 135 —4,409  2.85 (0.06) —4,397.3 2.93 (0.06) 0.0001 @ 15.36
Primate COXI (Seo, Kishino, and Thorne 2004) 21 506 —12,013.3 8.5(0.22) —-11,976.6 5.8 (0.15) <0.0001 @65.27
Drosophila adh (Yang et al. 2000) 23 254 —4,586.2 1.41(0.03) —4,583.4 1.47 (0.03) 0.23 —2.35
HIV-1 vif (Yang et al. 2000) 29 192 —3,347.2 097 (0.02)  —3,3344 0.99 (0.02) <0.0001 17.63
B-globin (Yang et al. 2000) 17 144 —3,659.3 2.6 (0.08) —3,649.1 3.3(0.1) 0.0004 12.43
Influenza A* (Yang 2000) 349 329 —-10916.5 1.42 (0.002) —10,860.7 1.42 (0.002) <<0.0001 103.7
Camelid VHH* (Harmsen et al. 2000) 212 96 —16,540.8 149 (0.04) —16,391.2 14.9 (0.04) <0.0001 291.24
Encephalitis env (Yang et al. 2000) 23 500 —6,774.4 0.85(0.02)  —6,752.8 0.89 (0.02) <0.0001 @35.15
Flavivirus NS5 (Yang et al. 2000) 18 183 -9,137.8 6.3 (0.19) —9,110.2 7.8 (0.24) <0.0001 @47.25
Hepatitis D antigen (Anisimova and Yang 2004) 33 196 —5,137.7 1.9 (0.03) —-5,074.2 2.02 (0.03) <0.0001 118.98

CONFOUNDERS 5 Mol. Biol. Evol. 22(12):2375-2385. 2005




