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Abstract

Natural selection is a fundamental force shaping organismal evolution, as it both
maintains function and enables adaptation and innovation. Viruses, with their typically
short and largely coding genomes, experience strong and diverse selective forces, some-
times acting on timescales that can be directly measured. These selection pressures
emerge from an antagonistic interplay between rapidly changing fitness requirements
(immune and antiviral responses from hosts, transmission between hosts, or coloniza-
tion of new host species) and functional imperatives (the ability to infect hosts or host
cells and replicate hosts). Many computational methods for quantifying such evolution-
ary forces using molecular sequences, dating back to the 1980s, were initially applied to
the study viral pathogens, largely because strong selective forces are easier to detect,
and because of clear biomedical relevance of such analyses. Recent commoditization of
affordable high-throughput sequencing has made it possible to generate truly massive
genomic samples, on which powerful and accurate methods can yield a very detailed
depiction of when, where, and (sometimes) how, viral pathogens respond to various
selective forces.

Here, we present recent statistical developments and state-of-the-art methods to
identify and characterize these selection pressures from protein-coding sequence align-
ments and phylogenies. Methods described here can reveal critical information about
various evolutionary regimes, including whole-gene selection, lineage-specific selection,
and site-specific selection acting upon viral genomes, while accounting for confounding
biological processes, such as recombination and variation in mutation rates.

Introduction
Natural selection is a powerful evolutionary force that shapes genomes of all living or-
ganisms. In typical applications, a single gene represented by isolates from different
individuals (e.g. sequences from many HIV-1–infected hosts), or different hosts (e.g.

1



primate lentiviruses) is considered for selection analyses. Given an alignment of homol-
ogous gene sequences, the strength of natural selection acting on a given gene or genes
can be measured in a phylogenetic context using codon models (Anisimova and Kosiol,
2009; Delport et al., 2009).

In this context, selection is typically measured using dN/dS (also referred to as ω,
or Ka/Ks), which represents the ratio of the non-synonymous evolutionary rate (dN)
to the synonymous evolutionary rate (dS). The synonymous evolutionary rate is used
to provide a baseline rate of neutral evolution because the average selective effect of a
synonymous substitution is assumed to be negligible compared to the effect of a non-
synonymous substitution 1. The selective regime can be deduced by establishing, with
a degree of statistical confidence, that dN/dS differs from unity, i.e., the neutral expec-
tation. Diversifying, balancing, or (sometimes) directional selection yields dN/dS > 1,
whereas purifying selection effects dN/dS < 1. Comparative methods for selection de-
tection estimate dN/dS, or dS and dN separately, and perform a statistical test to
establish which side of the neutral expectation the inferences fall on. As with any sta-
tistical procedure applied to finite data, each inference can be a false positive or a false
negative, although methods typically take care to control the rates of both.

While the question ‘ ‘Is this gene under selection?” is an obvious one, the nearly
universally applicable answer to this question is “yes”. That is because a functional gene
is (or has been) subject to some form of selection, e.g., negative selection to maintain
essential features. On the other extreme is the question that has an immediate biological
significance: “Is changing a leucine to an arginine at position 209 in gene X along a
specific branch in the phylogeny adaptive?”. Without additional information, such as
a carefully experimentally measured fitness impact of introducing said substitution,
current comparative sequence approaches cannot answer this question. Indeed, such a
scenario presents a sample size of one, which cannot be statistically meaningful.

In this chapter, we present a collection of statistical methods, each of which is de-
signed to carefully address a biological question somewhere on the spectrum between the
two extremes: sufficiently specific to be interesting, yet general enough to be answerable
based on only on the evolutionary history of homologous sequences. We will not discuss
the technical details of codon substitution methods here (for details, please see one of
the excellent available reviews Yang (2006); Anisimova and Kosiol (2009); Delport et al.
(2009), or the primary methods papers including Goldman and Yang (1994); Muse and
Gaut (1994); Nielsen and Yang (1998); Kosakovsky Pond and Muse (2005)). Instead,
we present each method operationally (“How and when does one use this method?”), by
answering the following questions:

1. What biological question is the method designed to answer?

2. What are the recommended applications?

3. How is this question posed in terms of dN/dS and which statistical test is used to
establish significance?

4. How to interpret positive and negative test results?

5. Rules of thumb for when this method is likely to work well, and when it is not.

1We note that there are a variety of well-documented situations where synonymous substitutions can have
strong effects on fitness (Hershberg and Petrov, 2008; Plotkin and Kudla, 2011)
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We conclude by discussing two evolutionary processes (recombination and synony-
mous rate variation) which are important to model, both in their own right, and because
ignoring their effects could mislead selection inference tools.

Recombination plays a key role in the evolution of many viral pathogens. For in-
stance, major pandemic strains of the Influenza A virus (IAV) have arisen through
segmental reassortment, which can be thought of as intergenic, or gene preserving,
recombination (note that because recombination is intergenic in influenza, the prior
analyses we perfomed here on IAV H3 are not confounded). For example, the swine
origin HIN1 virus has undergone at least two reassortment events, and carries genes
from three different ancestral IAV lineages (Smith et al., 2010).

Moreover, in HIV-1, each viral particle packages two RNA genomes. During reverse
transcription (RT), the RT enzyme switches between two RNA templates at rates as high
as 2×103 per nucleotide per replication cycle (Schlub et al., 2010), creating recombinant
DNA templates, which in turn can give rise to recombinant progeny. If a single cell is
infected with multiple divergent HIV-1 viruses (this can occur in up to 10% of infected
hosts, e.g., see Smith et al. (2009), depending on a variety of factors), then it is possible
that resulting recombinants will found distinct and novel viral lineages. Molecular
epidemiology of HIV-1 is replete with examples of such lineages, termed Circulating
Recombinant Forms (CRFs), with over 60 characterized to date (Taylor et al., 2008).

The viral type and species strongly influences how frequently recombination occurs.
For example, Chare and Holmes (2006) found evidence of recombination in 40% of plant
RNA genomes that they had examined, but in fewer than 10% of negative sense RNA
viruses (Chare et al., 2003). Apart from its importance in generating novel or removing
deleterious genetic diversity and accelerating evolution (Worobey and Holmes, 1999),
recombination has a strong effect on many practical aspects of evolutionary analyses
(Posada et al., 2002).

The rate of synonymous codon evolution (represented by dS in the context of codon
models) has long been modeled as constant across sites. Yet, there is ample evidence
that this rate varies across species, genes, and even intragenic positions. In particular,
intragenic synonymous rate variation has been identified across domains of life (Hersh-
berg and Petrov, 2008; Plotkin and Kudla, 2011; Lynch et al., 2016) and can arise from
a variety of evolutionary processes, including selection on mRNA secondary structure
(Chamary and Hurst, 2005), gene expression (Drummond and Wilke, 2008), GC-biased
gene conversion (Harrison and Charlesworth, 2011), and other neutral mutation pro-
cesses. For example, even the genomic context of a given nucleotide can influence its
mutation rate; indeed, experimental work has shown that GC-neighboring sites can fea-
ture up to a 75-fold increase in mutation rate (Sung et al., 2015; Lynch et al., 2016). In
addition, the synonymous rate at certain sites may be elevated due to the mutational
vulnerability of the non-template DNA strand during transcription (Lynch et al., 2016).
In viruses, specifically, strong signals of intragenic synonymous rate variation have been
shown to result from the presence of overlapping genomic elements. When a genic re-
gion overlaps transcription factor binding sites or microRNAs, each genomic element is
subject to unique selection pressures which can ultimately influence the mutation, and
hence synonymous, rate (Sealfon et al., 2015). We have previously shown that, due to
the many biological confounding factors discussed above, discounting dS variation as in
modeling coding sequence evolution can have strongly negative consequences, notably
that when dS variation is ignored, this can create false positve and false negative results
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in selection detection (Kosakovsky Pond and Muse, 2005).

Materials
The data used throughout the following tutorials and exercises are available from https:
//github.com/veg/evogenomics_hyphy . A “README” file in the top direc-
tory of this repository provides a detailed description of all contents. Importantly,
all datasets used here reside in the datasets directory. Please refer to https:
//www.hyphy.org for instructions on downloading and installing HyPhy to your
system. All exercises have been validated using version 2.3.3. Throughout, we will use
the hyphymp executable (MP = multiprocessor). For all analyses, you will need the
following information:

a). the full path to all files being analyzed (alignment and tree),
e.g. /home/user/data/alignment.fna,

b). the genetic code (in almost all cases, universal),

c). level of statistical significance; suggestions are given for each method below.

All methods will produce a final file of results in JSON (JavaScript Object Notation)
format, a highly extensible format that is simple, relatively compact, and both machine-
and human-readable. JSON output files can be visually and interactively examined
within our new web application, hyphy-vision, accessible at vision.hyphy.org.

All methods employ the general time reversible nucleotide model for initial branch
length optimization and correcting nucleotide substitution biases, followed by fitting a
Muse-Gaut model (with general time reversible nucleotide biases) to obtain preliminary
dN/dS estimates [see Kosakovsky Pond and Frost (2005) for more details] for detailed
model description] for selection inference. Codon frequencies estimated using the CF3x4
procedure (Kosakovsky Pond et al., 2010). In our view, the historical rationale for using
simpler evolutionary models (e.g. K80, F81, or HKY85), namely computational cost,
to fit nucleotide data is no longer relevant.

Finally, we consider different P-value thresholds depending on the given analysis
method. As site-level methods (FEL, SLAC, MEME) tend to be conservative on bi-
ological data, we consider significance as P ≤ 0.1 (or posterior probability ≥ 0.9 for
FUBAR). By contrast, we consider significance as P ≤ 0.05 for alignment-wide meth-
ods BUSTED, RELAX, and aBSREL.

Methods

How to run a selection analysis
There is a uniform workflow to run any of the described methods, either locally (on
one’s own computer and/or a high-performance computing environment) in HyPhy, or
using the Datamonkey web-service, available at www.datamonkey.org. The version
of HyPhy that supports all of the analyses is a command-line program, i.e., it must be
run from a terminal prompt (similar to most other bioinformatics packages) in Linux
or Mac OS X. It is also possible to run the program in Windows, with an appropriate
POSIX emulation environment (e.g., MinGW) installed.
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To execute a selection analysis locally, the following steps will need to be taken.

1. Prepare your coding sequence alignment. In general, any duplicate sequences
should be removed before analysis. Most importantly, it is imperative that the
sequence alignment be in reading frame, meaning that alignment must be per-
formed with codon structure in mind. A common approach to ensuring that this
criterion is met is to perform alignment on the translated amino-acid data, and
then back-translate to the original nucleotides.

2. Prepare a phylogenetic tree from the multiple sequence alignment. Note that
certain analyses may require a labeled phylogenetic tree, as indicated within each
subsequent tutorial. Keep in mind that for most selection analyses, a tree topology
is a nuisance parameter. Hence, while it is advisable to use good practices when
inferring trees, minor errors in tree inference tend to have minor effects on gene-
and site-level inference. A notable exception occurs when lineage-specific selection
is investigated; in this case ensuring high quality tree topologies is important.

3. An essential and strongly recommended step before analyzing data for selection
is to screen sequences for recombination. If recombinant sequences are naively
analyzed with an appropriate phylogenetic correction, inference results are likely
to be biased (Posada et al. (2002), and Section ).

4. Prepare your data (alignment and phylogeny) for input to HyPhy. There are three
ways to provide a dataset for HyPhy analysis, each of which will trigger a different
analysis prompt at runtime:

• Two separate files containing the alignment and phylogeny, respectively. In
this circumstance, HyPhy will issue two successive prompts: the first for the
file containing the alignment, and the second for the file containing the tree.

• A single file containing an alignment in one of the formats supported by
HyPhy (FASTA, MEGA, PHYLIP), with a Newick-formatted phylogeny in-
cluded at the bottom of this file. In this circumstance, HyPhy will issue two
successive prompts: the first for the file containing the alignment, and the sec-
ond asking whether to accept the tree found in the file (provide the affirmative
response, e.g., “y”, to accept it).

• A NEXUS file containing both the alignment and phylogeny. In this circum-
stance, HyPhy will automatically accept the provided phylogeny and therefore
will only issue a single prompt for the file containing the alignment. This is
also the format that can be used to specify partitioned data, which is necessary
to account for recombination.

5. Execute the appropriate method in HyPhy, selecting options suitable for the spe-
cific analysis.

6. Each method will provide live on-the-screen progress updates and, when finished,
a text summary of the analysis. The output is generated in Markdown, which can
either be read directly as text or formatted using one of many Markdown viewers.

7. When an analysis is finished, HyPhy will write a JSON file with numerous details
about the analysis to disk. By convention, this file will be placed in the same
directory as the input alignment file, with the added <method>.json extension,
e.g., flu_ha.nex.BUSTED.json for an input alignment named flu_ha.nex
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analyzed by the method BUSTED. All results contained in this JSON file can be
explored visually within a web browser using a web application from the hyphy-
vision suite of tools, accessible at vision.hyphy.org. Since JSON files can be
easily accessed by scripting and data-analysis languages, these are also well-suited
for incorporation into pipelines.

When run through www.datamonkey.org, this entire workflow is automated: one
simply uploads an alignment, selects options for the analysis, and waits for the job
to finish. Once the job has completed, the results will be displayed in an interactive
application within the web browser. Note that, if there are duplicate sequences in
the provided alignment, Datamonkey will automatically remove these sequences before
executing any analysis.

BUSTED
What biological question is the method designed to answer? Is there
evidence that some sites in the alignment have been subject to positive diversifying
selection, either pervasive (throughout the evolutionary tree) or episodic (only on some
lineages)? In other words, BUSTED(Murrell et al., 2015) asks whether a given gene
has been subject to positive, diversifying selection at any site, at any time. If a priori
information about lineages of interest is available (e.g., due to migration, change in the
environment, etc.), then BUSTED can be restricted to test for selection only on a subset
of tree lineages, potentially boosting power.

Recommended applications.
1. Annotating a collection of alignments with a binary attribute: has this alignment

been subject to positive diversifying selection (yes/no)? (Price, 2015).

2. Testing small or low-divergence alignments (i.e. ≤∼ 30 sequences) for evi-
dence of positive diversifying selection, where neither branch nor site level methods
have sufficient power.

Statistical test procedure. Each (branch, site) pair evolves with ω1 ≤ ω2 ≤ 1,
or ω3 ≥ 1, with the ratio chosen independently of other (branch, site) pairs with prob-
ability p1, p2, p3 (normalized to sum to 1). The three-rate ω distribution is estimated
jointly from the entire alignment, i.e., they are shared by all (branch,site) combina-
tions. Therefore, BUSTED is technically a "branch-site" model (Kosakovsky Pond
et al., 2011), although it is not intended to detect individual sites which drive signal of
selection.

The test for episodic diversifying selection is performed by comparing the full model
versus the nested null model, where ω3 is constrained to 1. Statistical significance is
obtained by the likelihood ratio test, assuming the χ2

2 asymptotic distribution of the
likelihood ratio statistic under the null model.

When only some of the branches are chosen for testing, and the remainder are
designated as the background, two independent three-rate ω distributions are fitted:
one for the test branches, and one for the background branches. Testing for selection is
carried out by constraining the distribution on the test branches as described above.
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Example Analysis To begin, we will perform a BUSTED analysis using a dataset
of primate-specific KSR2, kinase suppressor of RAS2, genes from (Enard et al., 2016).
This gene has been implicated as a so-called “virus-interacting protein,” and previous
work has suggested it has experienced adaptation in mammalian lineages due to selective
pressures exerted by viruses (Enard et al., 2016). We will test all lineages for positive
selection (rather than a subset of “test” branches), thereby asking the question: “Has
KSR2 been subject to diversifying selection at some time during evolution in primates?”

To run BUSTED, open a terminal session and enter HYPHYMP from the command
line to launch the HyPhy analysis menu. Enter 1 (Selection Analyses) and then 5 to
reach the BUSTED analysis menu, and supply values for the following prompts:

1. Choose genetic code. This option tells HyPhy which translation table to use
for codon-level analyses. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path to the dataset
of interest: /path/to/data/ksr2.fna.

3. A tree was found in the data file...Would you like to use it (y/n)? Enter
“y” to use the tree.

4. Choose the set of branches to test for selection. Enter 1 to test all branches
for selection.

BUSTED will now run to completion, printing status indicators to screen while
it runs. For an example of how this output will look when rendered into HTML (or
similarly, PDF), see this link: http://bit.ly/2vsRZrh.

Listing 1: Partial BUSTED screen output

### Branches to test for selection in the BUSTED analysis

* Selected 15 branches to test in the BUSTED analysis: ‘HUM, PAN, Node6, GOR, Node5, PON, Node4, GIB, Node3, MAC,
BAB, Node12, Node2, MAR, BUS‘

### Obtaining branch lengths and nucleotide substitution biases under the nucleotide GTR model

* Log(L) = -5768.01, AIC-c = 11582.06 (23 estimated parameters)

### Obtaining the global omega estimate based on relative GTR branch lengths and nucleotide substitution biases

* Log(L) = -5342.48, AIC-c = 10745.17 (30 estimated parameters)

* non-synonymous/synonymous rate ratio for *test* = 0.0342

### Improving branch lengths, nucleotide substitution biases, and global dN/dS ratios under a full codon model

* Log(L) = -5333.46, AIC-c = 10727.13 (30 estimated parameters)

* non-synonymous/synonymous rate ratio for *test* = 0.0307

### Performing the full (dN/dS > 1 allowed) branch-site model fit

* Log(L) = -5319.67, AIC-c = 10707.62 (34 estimated parameters)

* For *test* branches, the following rate distribution for branch-site combinations was inferred

| Selection mode | dN/dS |Proportion, %| Notes |
|-----------------------------------|---------------|-------------|-----------------------------------|
| Negative selection | 0.024 | 99.151 | |
| Negative selection | 0.085 | 0.812 | |
| Diversifying selection | 118.143 | 0.037 | |

### Performing the constrained (dN/dS > 1 not allowed) model fit

* Log(L) = -5326.18, AIC-c = 10718.63 (33 estimated parameters)

* For *test* branches under the null (no dN/dS > 1 model), the following rate distribution for branch-site
combinations was inferred

| Selection mode | dN/dS |Proportion, %| Notes |
|-----------------------------------|---------------|-------------|-----------------------------------|
| Negative selection | 0.000 | 10.598 | |
| Negative selection | 0.000 | 86.086 | Collapsed rate class |
| Neutral evolution | 1.000 | 3.316 | |

----
## Branch-site unrestricted statistical test of episodic diversification [BUSTED]
Likelihood ratio test for episodic diversifying positive selection, **p = 0.0015**.
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Interpreting results. The results printed to the terminal indicate a highly signif-
icant result (P = 0.0015) in the test for whole-gene selection. Analysis with BUSTED
therefore provides robust evidence that KSR2 experienced episodic positive selection
in the primates. Because we performed the original BUSTED analysis on the entire
tree (i.e. without a specified set of test branches), we do not know from this result
along which lineages KSR2 was subject to positive selection. We can conclude only
that a non-zero proportion of sites on some lineage(s) in the primate tree experienced
diversifying selection pressure.

The output additionally provided information about the specific BUSTED model
fits to the test data, including the inferred ω distributions and corresponding weights.
The BUSTED alternative model (shown under the output header Performing the
full (dN/dS > 1 allowed) branch-site model fit) found that a very small
proportion (only ∼0.037%) of sites evolved under a very large ω of over 100 (118.143
). Importantly, neither of these estimates will be precise because they were derived
from a small subset of the data. As such, all the BUSTED test establishes is that the
proportion of sites along test lineages (here, the entire phylogeny) with ω > 1 is non-
zero. For example, if BUSTED had inferred a rate category of ω = 10 on a different
gene, it would not be correct to claim that this gene evolves under weaker selection than
does KSR2. A formal statistical test would have to be carried out to establish such a
claim.

Conversely, had the result not been statistically significant, we would not be able to
reject the null hypothesis that no positive selection had occurred in KSR2. Importantly,
however, a negative would not unequivocally rule out the presence of positive selection.
This outcome could be caused a lack of statistical power wherein the provided data did
not contain a sufficiently strong signal for BUSTED to detect selection.

Because BUSTED assumes a fixed model complexity (3 values of ω) a priori, this
sometimes leads to over-parameterized (or under-parameterized) models. For example,
in the constrained model for KSR2, two of the three rate classes have the same value of
ω(0.0), implying that one of them is unnecessary. HyPhy will report this to the screen
as a diagnostic message, but there is no corrective action that needs to be taken. These
messages simply point to low-complexity data.

We will additionally take this opportunity to showcase the visual power of our ac-
companying web browser, HyPhy-Vision. Figure 1 displays the rendering of the output
ksr2.fna.BUSTED.json as it appears in HyPhy-Vision. On this site, users can inter-
actively view and explore inference results, view figures and charts, and perform other
tasks.

Rules of thumb for BUSTED use.
1. Best applied to small or medium-sized datasets (e.g., up to 100 sequences). Larger

datasets will take longer to run, and may be well described by a fixed complexity
model.

2. If one suspects that only a small subset of lineages is subject to selection, e.g.,
because the phenotype, environment, or fitness changed along those branches,
designating those a priori as the test set will significantly boost power (see an
Exercise).

3. In simulation studies, BUSTED performs best when a sufficient proportion (5-
10%) of branch site combinations is subject to positive diversifying selection, and
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the effect size (ω value) is reasonably large (e.g., ≥ 3).

RELAX
What biological question is the method designed to answer? Is there ev-
idence the strength of selection has been relaxed (or conversely intensified) on a specified
group of lineages (Test) relative to a set of reference lineages (Reference)? Importantly,
RELAX is not designed to detect diversifying selection specifically. We note that the
RELAX framework can perform both this specific hypothesis test as well as fit a suite
of descriptive models which address, for example, overall rate differences between test
and reference branches or lineage-specific inferences of selection relaxation. We focus
our attention here on RELAX’s hypothesis testing abilities. More information about
descriptive analyses is available on hyphy.org as well as in RELAX’s primary publi-
cation (Wertheim et al., 2015).

Recommended applications.
1. Testing for a systematic shift (relaxation / intensification) in the distribution of se-

lection pressure associated with major biological transitions such as hosting switch-
ing in viruses Forni et al. (2017), lifestyle evolution in bacteria (i.e. transition from
free-living to endosymbiotic lifestyle (Wertheim et al., 2015))

2. Comparing selective regimes between two subsets of branches in the tree, e.g. to
investigate selective differences among transmission routes in HIV-1 (Tully et al.,
2016).

Statistical test procedure. Given a tree with at least two sets of branches, one
of which is designated as Test, and the other - as Reference, the core version of RELAX
compares two nested models, which follow the same general framework as BUSTED.
Each (branch, site) combination is drawn independently from a 3-rate ω distribution.
The evolutionary rates for Test branches are functions of those for Reference branches.
Specifically, ωTest = ωK

Reference, where K is the relaxation or intensification parameter.
The alternative model infersK from the data, and the null model setsK = 1. Statistical
significance is obtained by the likelihood ratio test, assuming the χ2

1 asymptotic distri-
bution. asymptotic distribution of the likelihood ratio statistic under the null model. A
significant result of K > 1 indicates that selection strength has been intensified along
the test branches, and a significant result of K < 1 indicates that selection strength has
been relaxed along the test branches. This is because for K < 1 the values of ω for Test
branches shrink towards neutrality (ω = 1) relative to Reference, and for K > 1 they
move away from neutrality.

If some branches in the tree belong to neither the T est or the Reference set, they are
allocated to a group with its own (Unclassified) distribution of ω, which is uncoupled
from the testing procedure.

Example Analysis. We will perform a RELAX analysis using a dataset of Influenza
A PB2 subunit sequences2 from Tamuri et al. (2012). The PB2 subunit, which is part of

2Note that the original dataset in Tamuri et al. (2012) contained 401 sequences. For the purposes of this
tutorial, we analyze a subset of this alignment with only 60 sequences thereby achieving a tractable runtime
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influenza’s RNA polymerase complex, has emerged as a critical determinant of influenza
infectivity and, as a consequence, host range (Labadie et al., 2007; Graef et al., 2010).
The dataset we examine here contains both sequences from avian host and human host
strains. Previous studies have shown that this host switch is correlated with significant
shifts in selection pressures and preferred amino acids at key sites in PB2 (Tamuri et al.,
2009, 2012; Rodrigue, 2013). We now re-analyze this dataset using RELAX to ask a
different but related question: “Was the shift from avian to human hosts associated with
a relaxation of selection pressures in Influenza A PB2?”

RELAX requires an a priori specification of test and reference lineages, although
not all lineages in a tree need to be classified. As such, you must label your test (and
reference, if desired) branches in the input phylogeny. We provide an online widget to
assist with tree labeling at http://phylotree.hyphy.org. The dataset we have
provided for this analysis already has a labeled phylogeny, with the Human host lineages
labeled as “test”.

To run RELAX, open a terminal session and enter HYPHYMP from the command
line to launch the HyPhy analysis menu. Enter 1 (Selection Analyses) and then 7 to
reach the RELAX analysis menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path to the dataset
of interest: /path/to/data/pb2.fna.

3. A tree was found in the data file...Would you like to use it (y/n)? Enter
“y” to use the tree.

4. Choose the set of branches to test for selection. This option asks you to
specify the label inside your tree used to specify the test lineages. You can either
select all unlabeled branches, or HyPhy will show all labels it found in the tree
you provided. Enter 1 to select the branches labeled as “test” as the test set in
RELAX analysis.

5. Analysis type. This option asks you to specify the scope of RELAX analysis.
Selecting “Minimal” will run the RELAX hypothesis test, and selecting “All” will
run hypothesis testing and fit two additional descriptive models, described earlier.
Here, we will perform only hypothesis testing to determine whether the data shows
evidence for a relaxation or intensification of selection intensity between the test
and reference lineages. Enter the option 2 to run the “Minimal” analysis.

RELAX will now run to completion, printing status indicators to screen while it
runs:

Listing 2: Partial RELAX screen output
### Obtaining branch lengths and nucleotide substitution biases under the nucleotide GTR model

* Log(L) = -16755.26, AIC-c = 33660.66 (75 estimated parameters)

### Obtaining the global omega estimate based on relative GTR branch lengths and nucleotide substitution biases

* Log(L) = -14410.97, AIC-c = 28988.46 (83 estimated parameters)

* non-synonymous/synonymous rate ratio for *Reference* = 0.0401

* non-synonymous/synonymous rate ratio for *Test* = 0.0604

### Improving branch lengths, nucleotide substitution biases, and global dN/dS ratios under a full codon model

* Log(L) = -14354.67, AIC-c = 28875.86 (83 estimated parameters)

* non-synonymous/synonymous rate ratio for *Reference* = 0.0358

* non-synonymous/synonymous rate ratio for *Test* = 0.0609

on a personal machine.
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### Fitting the alternative model to test K != 1

* Log(L) = -14337.22, AIC-c = 28849.02 (87 estimated parameters)

* Relaxation/intensification parameter (K) = 0.73

* The following rate distribution was inferred for **test** branches

| Selection mode | dN/dS |Proportion, %| Notes |
|-----------------------------------|---------------|-------------|-----------------------------------|
| Negative selection | 0.031 | 94.752 | |
| Negative selection | 0.086 | 2.951 | |
| Diversifying selection | 1.406 | 2.297 | |

* The following rate distribution was inferred for **reference** branches

| Selection mode | dN/dS |Proportion, %| Notes |
|-----------------------------------|---------------|-------------|-----------------------------------|
| Negative selection | 0.009 | 94.752 | |
| Negative selection | 0.035 | 2.951 | |
| Diversifying selection | 1.591 | 2.297 | |

### Fitting the null (K := 1) model

* Log(L) = -14342.33, AIC-c = 28857.22 (86 estimated parameters)

* The following rate distribution for test/reference branches was inferred

| Selection mode | dN/dS |Proportion, %| Notes |
|-----------------------------------|---------------|-------------|-----------------------------------|
| Negative selection | 0.010 | 94.149 | |
| Negative selection | 0.021 | 3.391 | |
| Diversifying selection | 1.735 | 2.460 | |

----
## Test for relaxation (or intensification) of selection [RELAX]
Likelihood ratio test **p = 0.0014**.
>Evidence for intensification of selection among **test** branches _relative_ to the **reference** branches at P

<=0.05
----

Interpreting results. On this data, RELAX has inferred a relaxation parameter
K = 0.73 with a highly significant P = 0.0014. Therefore, there is evidence to reject
the null hypothesis that selection pressure has not been shifted in the test (here, human
host) lineages. We instead have strong evidence that selection has been relaxed (because
the inferred K < 1) in the human host lineages. In other words, selection in the test
branches has generally moved towards neutrality (ω = 1) compared to the reference
branches. This finding is consistent with the evolutionary changes that typically occur
during a virus host-switching event, wherein selection stringency will be reduced to
facilitate viral adaptation.

Keep in mind that RELAX defines relaxation (or intensification) in a fairly restrictive
fashion, i.e., all selective regimes (negative and positive) must weaken (or strengthen).
Therefore certain relaxation scenarios, e.g., when only positive selection is relaxed, but
negative selection is maintained, may result in a negative RELAX test.

Rules of thumb for RELAX use.
1. Always provide a labeled phylogeny indicating which branches to include in the

“test” lineages. You can additionally label “reference” lineages if you wish to keep
some branches as unclassified. It is convenient to use the phylotree.js online
widget at http://phylotree.hyphy.org/ to label branches before analysis.

aBSREL
It is often of interest to determine whether a specific lineage or lineage(s) have been
subject to selection. Such analyses have historically been performed using the so-called
“branch” or “branch-site” class of models, which allow evolutionary rates to vary across
branches, or across sites and branches (Yang and Nielsen, 2002; Zhang et al., 2005;
Kosakovsky Pond et al., 2011). Early versions of branch-site models allowed users to
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compare selection pressure on a pre-selected branch sets of “foreground” branches to a
pre-selected set of “background” branches, on which positive selection was disallowed
(Yang and Nielsen, 2002; Zhang et al., 2005). [Note that this approach is similar to how
BUSTED performs gene-wide selection inference (Murrell et al., 2015)]. Later efforts
demonstrated that disallowing positive selection on background branches could lead to
highly elevated false positive rates and advocated a strategy wherein any branch, re-
gardless of data partition, could evolve at any rate (Kosakovsky Pond et al., 2011).
This strategy has been described as the BS-REL model in HyPhy (Kosakovsky Pond
et al., 2011). However, in BS-REL, each branch was constrained to have three rate cat-
egories, an assumption with little justification. Since then, we have developed a greatly
improved branch-site model called aBSREL (“adaptive branch-site random effects like-
lihood“). Rather than assuming that each branch should be fit with three rate classes,
aBSREL infers, using small-sample Akaike Information Criterion correction (AICc), the
optimal number of rate categories per branch. In this manner, computational complex-
ity and the number of parameters are greatly reduced, leading to a tractable runtime for
larger datasets that could not otherwise be studied with other more intensive branch-site
models.

What biological question is the method designed to answer? Like clas-
sical branch-site models, aBSREL asks whether some proportion of sites is subject to
positive selection along specific branches or lineages of a phylogeny.

Recommended applications.
1. Exploratory testing for evidence of lineage-specific positive diversifying selection

in small to medium sized alignments (up to 100 sequences).

2. Targeted testing of branches selected a priori for positive diversifying selection,
including alignments with prohibitive runtimes under older branch-site models
(up to 1,000 sequences) (Smith et al., 2015).

Statistical test procedure. aBSREL uses the theoretic information criterion AICc

to automatically determine the complexity of the evolutionary process at every branch
(Smith et al., 2015). As a heuristic optimization, aBSREL will always examine branches
in order from longest to shortest, because longer branches tend to be the ones requiring
more complex models. In this adaptive model, one rate class is allowed to assume any
value of ω > 1, whereas for any other inferred rate class is constrained as ω ≤ 1. In
the null model, all ω categories are constrained as ω ≤ 1. For any branch inferred to
have sufficient rate variation (i.e. more than one rate category) where one rate category
is described by ω > 1, aBSREL will proceed to fit a null model to this branch. If
maxω ≤ 1, the null model will have the same exact fit as the alternative model, and the
resulting P-value is 1. The test for lineage-specific diversifying selection is performed
by comparing the full model versus the nested null model, and statistical significance is
obtained by the likelihood ratio test. Significance is evaluated using a mixture of 50%χ2

0,
20%χ2

1, and 30%χ2
2 distributions (proportions determined via simulations Smith et al.

(2015)). Finally, aBSREL will correct all P-values obtained from individual tests for
multiple comparisons using the Bonferroni-Holm procedures which controls family wise
false positive rates (i.e., the probability of generating one or more false positives, when
all null hypotheses are correct).
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One can either select a specific set of branches in order to test a specific a priori
hypothesis, or one can perform an exploratory analysis across the entire phylogeny by
testing all branches for selection. The former approach may have substantially more
power to detect selection, especially if only a few branches in a large tree are chosen, due
to the decreased volume of multiple testing, at the risk of potentially missing branches
subject to positive selection that have not been included in testing.

Example Analysis. Here, we will demonstrate aBSREL use and interpretation
using a dataset of HIV-1 env sequences collected from an epidemiologically-linked donor-
recipient transmission pair (Frost et al., 2005). This dataset can be found in the provided
file hiv1_transmission.fna.

To run aBSREL, open a terminal session and enter HYPHYMP from the command
line to launch the HyPhy analysis menu. Enter 1 (Selection Analyses) and then 6 to
reach the aBSREL analysis menu, and supply values for the following prompts:

1. Choose genetic code. This option tells HyPhy which translation table to use
for codon-level analyses. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path to the dataset
of interest: /path/to/hiv1_transmission.fna.

3. A tree was found in the data file...Would you like to use it (y/n)? Enter
“y” to use the included tree.

4. Choose the set of branches to test for selection. You can now select on
which branches aBSREL should conduct a formal hypothesis test for positive se-
lection.Enter 1 to test all branches for selection.

aBSREL will now run to completion, printing status indicators to screen while it
runs (some output abbreviated)

Listing 3: Partial aBSREL screen output
### Obtaining branch lengths and nucleotide substitution biases under the nucleotide GTR model

* Log(L) = -5524.50, AIC-c = 11153.08 (52 estimated parameters)

### Fitting the baseline model with a single dN/dS class per branch, and no site-to-site variation.

* Log(L) = -5402.40, AIC-c = 11009.72 (102 estimated parameters)

* Branch-level non-synonymous/synonymous rate ratio distribution has median 0.66, and 95% of the weight in 0.00
- 5.41

### Determining the optimal number of rate classes per branch using a step up procedure

| Branch | Length | Rates | Max. dN/dS | Log(L) | AIC-c |Best AIC-c so far|
|-------------|----------|----------|--------------------|---------------|---------------|-----------------|
| 0564_22 | 0.01 | 2 | 1.96 (52.27%) | -5402.41 | 11013.78 | 11009.72 |
| 0564_7 | 0.01 | 2 | 0.74 ( 5.19%) | -5402.40 | 11013.76 | 11009.72 |
| Separator | 0.01 | 2 | 197.32 ( 3.95%) | -5397.53 | 11004.02 | 11004.02 |
| Separator | 0.01 | 3 | 180.22 ( 4.08%) | -5397.53 | 11008.06 | 11004.02 |
| 0564_4 | 0.01 | 2 | 29.79 ( 2.15%) | -5394.37 | 11001.74 | 11001.74 |
| 0564_4 | 0.01 | 3 | 29.78 ( 2.15%) | -5394.37 | 11005.78 | 11001.74 |
| 0564_3 | 0.01 | 2 | 126.86 ( 3.14%) | -5388.59 | 10994.22 | 10994.22 |
| 0564_3 | 0.01 | 3 | 135.96 ( 3.05%) | -5388.59 | 10998.25 | 10994.22 |
| 0564_9 | 0.01 | 2 | 10.01 ( 8.61%) | -5388.37 | 10997.82 | 10994.22 |
...
| Node53 | 0.00 | 2 | 1.00 (100.00%) | -5371.63 | 10976.46 | 10971.76 |
| 0557_6 | 0.00 | 2 | 27.66 (100.00%) | -5371.32 | 10975.83 | 10971.76 |
| 0557_21 | 0.00 | 2 | 0.25 ( 1.96%) | -5371.30 | 10975.80 | 10971.76 |
| 0557_7 | 0.00 | 2 | 0.25 ( 1.96%) | -5371.30 | 10975.80 | 10971.76 |

### Rate class analyses summary

* 38 branches with **1** rate classes

* 6 branches with **2** rate classes

### Improving parameter estimates of the adaptive rate class model

* Log(L) = -5370.66, AIC-c = 10970.49 (114 estimated parameters)

### Testing selected branches for selection
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| Branch | Rates | Max. dN/dS | Test LRT |Uncorrected p-value |
|-----------------------------------|----------|--------------------|--------------------|--------------------|
| 0564_22 | 1 | 1.22 (100.00%) | 0.11 | 0.43015 |
| 0564_7 | 1 | 0.61 (100.00%) | 0.00 | 1.00000 |
| Separator | 2 | 197.72 ( 3.95%) | 14.13 | 0.00029 |
| 0564_4 | 2 | 28.89 ( 2.15%) | 4.81 | 0.03281 |
| 0564_3 | 2 | 127.66 ( 3.14%) | 14.06 | 0.00030 |
| 0564_9 | 1 | 0.72 (100.00%) | 0.00 | 1.00000 |
| 0564_1 | 1 | 1.07 (100.00%) | 0.01 | 0.48208 |
...
| 0557_21 | 1 | 1.00 (100.00%) | 0.00 | 1.00000 |
| 0557_7 | 1 | 1.00 (100.00%) | 0.00 | 1.00000 |
----
### Adaptive branch site random effects likelihood test
Likelihood ratio test for episodic diversifying positive selection at Holm-Bonferroni corrected _p = 0.0500_

found **3** branches under selection among **44** tested.

* Node35, p-value = 0.00018

* Separator, p-value = 0.01251

* 0564_3, p-value = 0.01266

Interpreting results. The first table summarizes the model selection process. For
example, when two ω rates were assigned to branch Separator, this improved the AICc

score of the fit (compared to the single rate model) from 11009.72 to 11004.02. However,
allocating three ω rates to the same branch worsens the score to 11008.06. Therefore
the aBSREL model will use two ω rates at the branch.

The second table shows the results of tests for episodic selection on individual
branches. At branch 0564_4 , the tested model included two ω rates, with the positive
selection class taking on value 28.89 (2.15% proportion of the mixture). Constraining
this rate to range between 0 and 1 yields the likelihood ration test statistic of 4.81,
which maps to a P-value (before multiple test correction) of 0.03281.

For this dataset, aBSREL identified three branches that were subject to diversifying
selection pressure. Further examination of results using HyPhy Vision shows that these
branches are found i) along the transmission event from donor to recipient, and ii) within
a highly-diverged clade in the donor (Figure 2). The first finding is consistent with an
expected increase in evolutionary rate when a virus infects a new host and encounters
novel host immunity, and the second finding is consistent with intrahost adaptive dy-
namics of the donor’s long-term HIV infection. Importantly, a close examination of
the markdown-output table under the header Testing selected branches for
selection reveals several nodes with uncorrected p-values whose significance was lost
upon applying the Bonferroni-Holm correction, e.g. 0564_4. This result illustrates the
potential loss of power incurred by this aBSREL exploratory analysis.

Rules of thumb for aBSREL use
1. A priori identification of branches to test for selection will generally increase power

to detect selection on those branches. That said, to maintain statistical robustness,
we strongly discourage performing multiple separate tests for selection on different
branch sets. Such an approach will necessarily introduce false positives. In such a
case, we recommend performing an exploratory analysis wherein all branches are
considered

2. Exploratory analyses of very large datasets are unlikely to yield many significant
results, because correcting for multiple testing will reduce power as the number
of branches grows, while the amount of statistical signal does not increase for
larger datasets. One option is to thin out large phylogenies (before performing
any testing), retaining major clades and lineages of interest.
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Site-level selection: MEME, FEL, SLAC, and FUBAR
What biological question is the method designed to answer? The meth-
ods FEL, SLAC, and FUBAR address the question: Which site(s) in a gene are subject
to pervasive, i.e. consistently across the entire phylogeny, diversifying selection? MEME
addresses a more general question: Which site(s) in a gene are subject to pervasive or
episodic, i.e. only on a single lineage or subset of lineages, diversifying selection?

Recommended applications.
1. MEME is the sole method in HyPhy for detecting selection at individual sites

that considers both pervasive and episodic selection. MEME is therefore our rec-
ommended method if maximum power is desired.

2. The phenomenon of pervasive selection is generally most prevalent in pathogen
evolution and any biological system influenced by evolutionary arms race dynamics
(or balancing selection), including adaptive immune escape by viruses. As such,
FEL, SLAC, and FUBAR are ideally suited to identify sites under positive selection
which represent candidate sites subject to strong selective pressures across the
entire phylogeny . Each of these methods has a particular use case as well:

• FEL is our recommended method for analyzing small-to-medium size datasets
when one wishes only to study pervasive selection at individual sites.

• FUBAR is our recommended method for detecting pervasive selection at
individual sites on large (> 500 sequences) datasets for which other methods
have prohibitive runtimes, unless you have access to a computer cluster.

• SLAC provides legacy functionality as a counting-based method adapted for
phylogenetic applications. In general, this method will be the least statisti-
cally robust.

Statistical test procedure. Each method presented here employs a distinct algo-
rithmic approach to inferring selection. FEL uses maximum likelihood to fit a codon
model to each site, thereby estimating a value for dN and dS at each site. FEL tests for
selection with the likelihood ratio test, asking whether the dN estimate is significantly
greater than the inferred dS estimate.

SLAC represents the most basic inference method and is an extension of the Suzuki-
Gojobori counting-based method (Suzuki and Gojobori, 1999) for phylogenetically-
related sequences (as opposed to sequence pairs). SLAC uses maximum likelihood to
infer ancestral characters for each site across the phylogeny and then directly counts
the number of synonymous and non-synonymous changes which have occurred at each
site over evolutionary time. SLAC then tests for selection by testing whether or not
there are too many or too few non-synonymous changes compared to what is expected
under neutrality. The neutral expectation is derived based on the phylogeny-wide esti-
mated numbers of synonymous and non-synonymous nucleotide sites at a given codon.
The statistical test employs the binomial distribution to compute significance, e.g. how
likely is it to observe 13 non-synonymous and 1 synonymous substitution at a site, if
the expected synonymous to non-synonymous substitution count ratio under neutrality
is 1 : 4.

MEME employs a mixed-effects maximum likelihood approach. For each site, MEME
infers two ω rate classes and corresponding weights representing the probability that

15



the site evolves under each rate class at a given branch. To this end, MEME infers
a single α (dS) parameter and two separate β (dN) parameters, β− and β+. The ω
rates per site, therefore, consist of β+/α and β−/α. MEME uses this framework to fit
a null and alternative model each, both models enforcing the constraint β− ≤ α. The
null model disallows positive selection by enforcing the constraint β+ ≤ α, whereas the
alternative model places no constraint on β+. MEME uses the likelihood ratio test to
compare between null and alternative model fits, with significance assessed using the
mixture of 33%χ2

0, 30%χ2
1, and 37%χ2

2.
FUBAR takes a Bayesian approach to selection inference and is a particular case of

statistical models developed in the context of document classification (latent Dirichlet
allocation). The key innovation to FUBAR’s approach is its use of an a priori specified
grid of dN and dS values (typically 20×20), spanning the range of negative, neutral, and
positive selection regimes, whose likelihoods can be precomputed and used throughout
analysis (rather than having to re-compute likelihoods during optimization as traditional
random-effects approaches do (Nielsen and Yang, 1998; Kosakovsky Pond and Frost,
2005)). This approach, combined with other algorithmic advances, speeds computation
time by an order of magnitude compared to FEL, whilst yielding comparable statistical
performance. FUBAR estimates every model parameter except the proportion of sites
allocated to each grid point using simple (and fast) nucleotide models. The proportions
are estimated using an MCMC procedure, and non-neutral evolution at each site is
inferred using a straightforward naive empirical Bayes approach (Nielsen and Yang,
1998). Sites are called positively or negatively selected if the corresponding posterior
probabilities are sufficiently high.

All methods with the exception of MEME report both positively and negatively
selected sites.

Example Analysis We will demonstrate the use and interpretation of site-level
methods using data from influenza strain H3N2 (the “Hong Kong flu”), the primary cir-
culating strain of seasonal influenza the late 1960s. We specifically will assess selection
on the H3 hemagglutinin, the influenza surface protein which is responsible for host cell
binding. Hemagglutinin experiences rapid evolution triggered by host immune escape,
and previous studies have identified numerous signatures of positive diversifying selec-
tion in H3 sequences with a particular concentration around the host-binding domain
(Nelson and Holmes, 2007)

We base analyses here on an alignment from Meyer and Wilke (2015) of 2555 full
H3 sequences sampled over time since the 1991–1992 influenza season. We removed all
partial and strongly outlying sequences (i.e. those with excessive divergence) from the
original dataset before proceeding. We further subsetted this alignment to two smaller
alignments with comparable numbers of taxa but spanning different evolutionary time
frames: The first smaller alignment (“trunk”) contains 163 sequences sampled along
the influenza H3 trunk, whereas the second smaller alignment (“shallow”) contains 121
sequences sampled from a single clade (Figure 3). Therefore, while these two smaller
datasets contain a comparable number of sequences, the “trunk” dataset spans a much
longer time frame and contains substantially more sequence divergence relative to the
“shallow” dataset. Indeed, the trunk dataset has a total tree length (sum of branch
lengths, in units substitutions/site/unit time) of 0.43, whereas the shallow dataset had
a total tree length of 0.12, meaning that the trunk dataset contains nearly four times the
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amount of sequence divergence seen in the shallow dataset. We have compiled results
for all three datasets analyzed with all four methods (Table 1). We now describe, using
the trunk dataset as an example, how to run each of these analyses in HyPhy.

FEL Launch HyPhy from the command line, and enter options 1 (Selection Analyses)
and then 2 to reach the FEL analysis menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path to the dataset
of interest: /path/to/data/trunk.fna.

3. A tree was found in the data file...Would you like to use it (y/n)?. Enter
“y” to use the tree.

4. Choose the set of branches to test for selection. This option allows you
to specify which branches along which site-level inference should be performed.
Enter 1 to test All branches for selection.

5. Use synonymous rate variation?. This option asks you to specify whether the
dS parameter in the codon model should be allowed to vary across sites (“Yes”)
or be fixed to 1 at all sites (“No”). Enter 1 to use a model with synonymous rate
variation.

6. Select the p-value used to perform the test at (permissible range = [0,1],
default value = 0.1). Provide the default threshold of 0.1.

FEL will now run to completion and print status indicators to the screen, including
results for any site found to be under selection (either positive or negative). Abbreviated
results are shown below.

Listing 4: Partial FEL screen output

### Obtaining branch lengths and nucleotide rates under the GTR model

* Log(L) = -7506.06

### Obtaining the global omega estimate based on relative GTR branch lengths and nucleotide substitution biases

* Log(L) = -7302.10

* non-synonymous/synonymous rate ratio for *test* = 0.2923

### Improving branch lengths, nucleotide substitution biases, and global dN/dS ratios under a full codon model

* Log(L) = -7289.65

* non-synonymous/synonymous rate ratio = 0.2598

### For partition 1 these sites are significant at p <=0.1

| Codon | Partition | alpha | beta | LRT |Selection detected?|
|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-----------------:|
...
| 146 | 1 | 3.818 | 0.000 | 7.336 | Neg. p = 0.0068 |
| 152 | 1 | 1.968 | 0.000 | 3.634 | Neg. p = 0.0566 |
| 154 | 1 | 0.000 | 3.912 | 4.652 | Pos. p = 0.0310 |
| 159 | 1 | 4.413 | 0.716 | 2.972 | Neg. p = 0.0847 |
| 164 | 1 | 2.082 | 0.000 | 2.713 | Neg. p = 0.0995 |
| 176 | 1 | 1.659 | 0.000 | 2.986 | Neg. p = 0.0840 |
| 177 | 1 | 6.393 | 0.000 | 8.421 | Neg. p = 0.0037 |
| 181 | 1 | 1.928 | 0.000 | 3.286 | Neg. p = 0.0699 |
| 190 | 1 | 2.085 | 0.000 | 2.715 | Neg. p = 0.0994 |
| 201 | 1 | 1.645 | 0.000 | 3.370 | Neg. p = 0.0664 |
| 208 | 1 | 0.000 | 3.625 | 4.668 | Pos. p = 0.0307 |
...

### ** Found _3_ sites under pervasive positive diversifying and _115_ sites under negative selection at p <=
0.1**

Inference details for codons with significant likelihood ratio tests for positive or
negative selection are reported to the screen.
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Codon
The codon where non-neutral evolution has been detected

Partition
Allows one to keep track which subset of the alignment a particular site belongs
to. This is important for recombination-corrected partition analyses.

alpha
site specific synonymous substitution rate

beta
site specific non-synonymous substitution rate

LRT
site specific likelihood ratio test statistic for non-neutral evolution (alpha 6= beta)

Selection detected?
selection classification (Positive or Negative) and the corresponding P-value

The “Codon” and “Partition” columns are common to all site-specific analyses.

MEME and SLAC SLAC and MEME follow identical menu prompts as FEL, with
the exception that only FEL will prompt for synonymous rate variation. Instead, SLAC
has a different prompt for Step 5: Select the number of samples used to assess
ancestral reconstruction uncertainty. If this number is positive, then HyPhy will
draw samples from the distribution of ancestral states and use them to measure whether
or not inference is sensitive to ancestral inference uncertainty. When you encounter this
option, provide the default value of 100 (or 0 to forego sampling). MEME does not
emit any additional prompts.

Listing 5: Partial SLAC screen output
...
### For partition 1 these sites are significant at p <=0.1

| Codon | Partition | S | N | dS | dN |Selection detected?|
|:-----:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-----------------:|
...
| 146 | 1 | 3.000 | 0.000 | 3.000 | 0.000 | Neg. p = 0.037 |
| 154 | 1 | 0.000 | 8.000 | 0.000 | 4.000 | Pos. p = 0.039 |
| 177 | 1 | 3.000 | 0.000 | 4.038 | 0.000 | Neg. p = 0.020 |
| 208 | 1 | 0.000 | 6.000 | 0.000 | 2.994 | Pos. p = 0.089 |

...
### Ancestor sampling analysis

>Generating 100 ancestral sequence samples to obtain confidence intervals

Resampling results for partition 1

| Codon | Part. | S [median, IQR] | N [median, IQR] | dS [median, IQR] | dN [median, IQR] | p-value [median, IQR]|
|:-----:|:-----:|:---------------:|----------------:|-----------------:|-----------------:|---------------------:|
...
| 146 | 1 | 3.00 [3.00-3.00]| 0.00 [0.00-0.00]| 3.00 [3.00-3.00] | 0.00 [0.00-0.00] | 0.04 [0.04-0.04]. |
| 154 | 1 | 0.00 [0.00-0.00]| 8.00 [8.00-8.00]| 0.00 [0.00-0.00] | 4.00 [4.00-4.00] | 0.04 [0.04-0.04] |
| 177 | 1 | 3.00 [3.00-4.00]| 0.00 [0.00-0.00]| 4.04 [4.04-5.38] | 0.00 [0.00-0.00] | 0.02 [0.01-0.02] |
| 208 | 1 | 0.00 [0.00-0.00]| 6.00 [6.00-6.00]| 0.00 [0.00-0.00] | 2.99 [2.99-2.99] | 0.09 [0.09-0.09] |

...

SLAC reports several key quantities for codons with significant P-values for positive
or negative selection to the screen.

S the number of synonymous substitutions inferred at this site

NS the number of non-synonymous substitutions inferred at this site

dS estimated site-specific synonymous rate
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dN estimated site-specific non-synonymous rate

Selection detected?
selection classification (Positive or Negative) and the corresponding P-value for
the binomial test

If the user elected to perform ancestral resampling, another table is reported, show-
ing how much these quantities are affected by ancestral state reconstruction uncertainty.
For example, at codon 177, some ancestral reconstructions yielded 3 synonymous sub-
stitutions, whereas others yielded 4; however this was not sufficient to move the P-value
on different sides of the threshold.

Listing 6: Partial MEME screen output
...
| Codon | Partition | alpha | beta+ | p+ | LRT |Episodic selection detected?| # branches |
|:------:|:---------:|:-------:|:-------:|:-------:|:-------:|:--------------------------:|:----------:|
| 64 | 1 | 0.000 | 14.717 | 0.204 | 3.512 | Yes, p = 0.0816 | 0 |
| 154 | 1 | 0.000 | 35.302 | 0.145 | 5.334 | Yes, p = 0.0317 | 0 |
| 171 | 1 | 0.000 | 45.005 | 0.017 | 5.753 | Yes, p = 0.0256 | 0 |
| 208 | 1 | 0.000 | 59.749 | 0.089 | 5.554 | Yes, p = 0.0283 | 0 |
| 242 | 1 | 1.839 | 34.114 | 0.216 | 4.273 | Yes, p = 0.0549 | 0 |
| 402 | 1 | 0.000 | 10.476 | 0.091 | 3.493 | Yes, p = 0.0824 | 0 |

### ** Found _6_ sites under episodic diversifying positive selection at p <= 0.1**

MEME prints information only about codons subject to positive selection, since
MEME does not directly test for negative selection.

alpha
site specific synonymous substitution rate

beta+
site specific non-synonymous substitution rate for the positive selection category

p+ site specific weight (∼ proportion of branches) assigned for the positive selection
category

LRT
site specific likelihood ratio test statistic for episodic diversifying selection (beta+ >
1 and p+ > 0)

Episodic selection detected?
selection classification (Yes) and the corresponding P-value

# branches
an exploratory estimate of the number of individual branches which have sufficient
empirical Bayes support for positive selection; since MEME pools signal from mul-
tiple branches, there may be overall evidence for selection, without any individual
branches "lighting up".

FUBAR To run FUBAR, launch HyPhy from the command line, and enter options 1
(Selection Analyses) and then 4 to reach the FUBAR analysis menu, and supply values
for the following prompts3:

1. Choose genetic code. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path to the dataset
of interest: /path/to/data/h3_trunk.fna.

3Note that for all prompts with default values, simply pressing enter will choose this default

19



3. A tree was found in the data file...Would you like to use it (y/n)?. Enter
“y” to use the tree.

4. Number of grid points per dimension. This option controls how fine the
FUBAR analysis is by setting the range of possible dN and dS values that can be
inferred, along an N ×N grid. We will use the default value of 20 (leading to a
20× 20 grid of dN/dS ratios). FUBAR will now pre-compute likelihoods for each
value in the grid.

5. Number of MCMC chains to run. This option determines the number of
Markov Chain Monte Carlo chains to run during Bayesian inference of evolutionary
rates. Enter the default value of 5 to run 5 chains.

6. The length of each chain. This option controls for how long each MCMC chain
should be run. Enter the default value of 2000000 to run each chain for two
million generations (thus obtaining two million samples).

7. Use this many samples as burn-in. This option determines how many initial
samples drawn from the MCMC chain should be discarded as burn-in, as is stan-
dard in Bayesian analyses. Enter the default value of 1000000, leading to a final
value of one-million draws per chain.

8. How many samples should be drawn from each chain. This option deter-
mines the final number of samples to draw from the full set of one-million draws
per chain. Enter the default value of 100.

9. The concentration parameter of the Dirichlet prior. This option controls
the shape of the Dirichlet prior distribution. Enter the default value of 0.5.

Listing 7: Partial FUBAR screen output
...
### Tabulating site-level results
| Codon |Partition | alpha | beta | N.eff |Posterior prob for positive selection|
|:---------:|:--------:|:--------------:|:--------------:|:--------------:|:-----------------------------------:|
| 61 | 1 | 0.753 | 4.365 | 64.549 | Pos. posterior = 0.9262 |
| 64 | 1 | 0.753 | 3.920 | 77.106 | Pos. posterior = 0.9095 |
| 69 | 1 | 0.730 | 4.447 | 64.182 | Pos. posterior = 0.9325 |
| 154 | 1 | 0.637 | 6.595 | 53.312 | Pos. posterior = 0.9826 |
| 208 | 1 | 0.622 | 5.908 | 55.794 | Pos. posterior = 0.9731 |
| 242 | 1 | 2.215 | 12.055 | 1489.879 | Pos. posterior = 0.9131 |
----
## FUBAR inferred 6 sites subject to diversifying positive selection at posterior probability >= 0.9
Of these, 0.36 are expected to be false positives (95% confidence interval of 0-2 )

Like other site analyses, FUBAR will print a number of inferences about each indi-
vidual site detected to be under pervasive positive selection

alpha
the posterior estimate of the synonymous substitution rate at a site

beta
the posterior estimate of the non-synonymous substitution rate at a site

N.eff
an estimate of the effective sample size for inferring positive selection at this site;
smaller values (e.g. < 20) imply that the MCMC procedure may have failed to
sample the parameter space well, and longer chains (or more chains) might be
indicated

Posterior prob for positive selection
the estimated posterior probability for pervasive diversifying selection (dN/dS >
1).
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Dataset Method Sites under selection at P ≤ 0.1∗

Full H3 MEME (15) 19 , 47, 61, 69, 110, 154 , 156, 173, 208 , 236, 241, 277,
278, 292, 538

Full H3 FEL (15) 19 , 47, 61, 69, 110, 154 , 156, 173, 236, 237, 241, 277,
278, 292, 538

Full H3 SLAC (20) 19 , 47, 61, 69, 110, 137, 154 , 156, 158, 173, 189, 208 ,
236, 237, 241, 277, 278, 292, 505, 546, 564

Full H3 FUBAR (13) 47, 61, 69, 110, 154 , 160, 173, 208 , 236, 237, 241, 278,
538

Shallow H3 MEME (2) 49, 320
Shallow H3 FEL (2) 49, 241
Shallow H3 SLAC None
Shallow H3 FUBAR (3) 19 , 49, 241
Trunk H3 MEME (6) 64, 154 , 171, 208 , 242, 402
Trunk H3 FEL (3) 64, 154 , 208
Trunk H3 SLAC (2) 154 , 208
Trunk H3 FUBAR (6) 61, 64, 69, 154 , 208 , 242

Table 1: Sites identified as positively selected across the H3 datasets analyzed here. Bold sites are those
identified by multiple methods for a given dataset. Bold italicized sites are those identified in more than one
dataset, generally by more than one method. Numbers in parentheses give the total number of positively-
selected sites identified with the given method and dataset.
∗ For FUBAR, significance is assessed as Posterior Probability ≥ 0.9.

Interpreting results Sites identified as positively selected by each method, across
all three datasets, are given in Table 1. In general, we expect MEME to be the most
comprehensive and robust of all site level methods because it uniquely considers both
pervasive and episodic selection (Murrell et al., 2012). In addition, power studies have
shown that FUBAR is expected to outperform FEL and SLAC under most circumstances
(Murrell et al., 2013). Finally, we expect that SLAC will be the least robust method
due to its reliance on a relatively naive counting-based approach (Kosakovsky Pond and
Frost, 2005).

These expectations are generally borne out in the results obtained here in our brief
study of H3 selection. For the full H3 dataset of 2555 sequences, MEME and FEL each
identified 15 sites under positive selection, with all sites identical except for a single
difference: MEME uniquely identified site 208 and FEL uniquely identified with 237.
Interestingly, site 208 was additionally identified as positively selected by all methods
on the trunk H3 dataset. Combined, these results demonstrate MEME’s ability to
identify sites subject to both pervasive and episodic selection, as site 208 appears to be
under pervasive selection only along the H3 trunk. Because FEL uses a less stringent
test statistic distribution (χ2

1) to call significance, occasionally sites subject to pervasive
selection near the significance thresholds may be detected by FEL (e.g., 237, with p =
0.08), but missed by MEME (e.g., 237, with p = 0.105).

FUBAR identified two fewer selected sites in the full H3 alignment compared to FEL
(which is a directly comparable test), missing sites 19 (posterior 0.83), 277 (posterior
0.59), and 292 (posterior 0.89) relative to FEL, but adding site 160 (FEL p = 0.8).

In addition to differences across methods, we expect to see some important differ-
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ences for sites inferred across the the full, shallow, and trunk H3 datasets. Because the
trunk and full H3 datasets span similar time frames, we expect sites returned for these
two datasets to have the most overlap. In addition, sites found to be under selection in
the shallow lineage may not be detected across the full H3 phylogeny, as selection may
have been fleeting, weak, or constrained to the specific shallow clade examined here. For
example site 49 was specifically selected in the shallow H3 lineage alone, as indicated
by three of the four methods. In contrast, sites 19 and 241 were found to be selected in
both the shallow and the full H3 datasets, but this signal was not apparent when the
trunk lineage was examined independently, perhaps because these sites experience only
transient changes that do not propagate along the trunk.

What are some potential reasons for seeing discrepancies in inferences across H3
datasets? The site 154, for example, is positively selected in both the full H3 phylogeny
and the trunk H3 lineage, but not the shallow H3 lineage. This result suggests that site
154 may have experienced pervasive selection throughout H3 evolution, but its signal
in the shallow clade alone was either too weak to detect or selection was attenuated in
the shallow clade. In addition, sites which appeared only in the shallow clade analyses
may have experienced lineage-specific selection where the signal was too weak to detect
when the entire phylogeny was considered.

Furthermore, while MEME, FEL, and FUBAR were able to detect selected sites in
the shallow H3 lineage, SLAC did not identify any such sites, because SLAC requires
a large number of substitutions to achieve significance, and those are unlikely to take
place at any particular site in the shallow sample.

We emphasize that there in many cases different site-level methods will not identify
exactly the same set of sites under selection, although, as the H3 example shows, the
agreement between is typically good.

Rules of thumb for site-level detection of selection
1. Small datasets, i.e., fewer than 10 sequences especially when coupled with low

divergence, are unlikely to yield any sites under selection. Consider using gene-
wide methods like BUSTED or aBSREL to look for selection in these cases.

2. On large datasets (e.g. > 500 sequences), all methods tend to give similar re-
sults (but see the MEME exception below), hence the default method of choice is
FUBAR, since its run time is much shorter than FEL or MEME, and its statistical
performance is better than SLAC.

3. MEME tends to be the most sensitive method, because it is the only one designed
to detect episodic selection. Indeed, sometimes SLAC, FEL, or FUBAR may all
call a site subject to episodic positive selection site negatively selected, if a burst
of selection is followed by strong conservation. MEME is often able to tease the
two processes apart and correctly call such sites positively selected. Hence, MEME
should be the preferred method, unless computationally prohibitive.

4. Should one always run all the available methods on a given dataset and then
aggregate the results, as done in Table 1? We don’t recommend this approach in all
cases. Firstly, while it may be tempting to use agreement between all methods as a
hedge against false positives, calling a site selected only if all the methods agreed on
it, reduces the power of the analysis to that of the least sensitive method. Secondly,
while there is potentially a lot of information to be gleaned by comparing the sites
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on which methods disagree (e.g., a site detected by MEME but not FUBAR may be
under strong episodic selection), considerable effort and diligence must be put into
disentangling biologically meaningful differences from statistical artifacts. Thirdly,
statistical strategy must be informed before the analysis commences by deciding
what it is that is important to optimize: does one care more about specificity
(reducing false positives) or sensitivity (reducing false negatives)? For example if
little is known about a gene, it may be advisable to generate the most inclusive
list of sites that could be subject to selection for subsequent testing using other
approaches; in this case the most sensitive method or the union of all methods
may be appropriate.

5. Should one perform multiple testing or false discovery rate correction on individual
site results? We don’t recommend this. Firstly, methods are calibrated to not
generate excessive false positives on strictly neutral data. In most genes, most sites
will be under relatively strong negative selection, making the statistical testing
procedure conservative. Secondly, multiple testing corrections will nearly always
yield no significant results on small to moderate size datasets. Thirdly, some key
of assumptions of methods for correcting false discovery rates are not applicable
for site level testing: for example, a typical collection of results from site-level
testing will contain very few true "null" (neutral) p-values.

Screening sequences for recombination
A critical aspect of sequence analysis we have not yet covered is the detection of and
correction for recombination in an alignment of homologous sequences. In general, we
strongly advocate screening an alignment for recombination before proceeding with addi-
tional analyses, unless there is good a priori reason to discount intragenic recombination
due to the biology of the system (e.g., such recombination is thought to be negligibly
rare in Influenza A viruses). Indeed, because recombination causes different regions of
an alignment to be related by different phylogenies, its presence can heavily influence
selection detection and other downstream applications.

There are many computational approaches to finding evidence of recombination
in a sequence alignment (Posada and Crandall, 2001), however at their core, many
such methods look for evidence of phylogenetic incongruence. Here, we demonstrate
one such method, GARD (Genetic Algorithms for Recombination Detection) that we
have found to perform very well among a wide range of approaches on simulated data
(Kosakovsky Pond et al., 2006).

GARD
What biological question is the method designed to answer? Have se-
quences in the given alignment undergone recombination, and if so what are the recom-
bination breakpoints and segment-specific phylogenies?

Recommended applications. GARD is geared towards mapping the breakpoints
and detecting segments of the alignment which can be adequately described by a single
tree topology. Therefore, alignments, particularly alignments of viral sequences, should
be screened for the presence of recombination before performing any selection inference.
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The NEXUS output from GARD can be directly used as input for most downstream
selection detection analyses.

Statistical test procedure. GARD employs a genetic algorithm to find a solu-
tion to a complex optimization problem by mimicking processes of biological evolution
(mutation, recombination and selection) in a population of competing solutions. In
this application of genetic algorithms, we are evolving a population of “chromosomes”
that specify different numbers and locations of recombination breakpoints in the align-
ment with the objective of detecting topological incongruence, i.e., support for different
phylogenies by separate regions of the alignment. The “fitness” of each chromosome is
determined by using maximum likelihood methods to evaluate a separate phylogeny for
each non-recombinant fragment defined by the breakpoints (e.g. to the left and to the
right of a breakpoint in Figure 4), and computing a goodness of fit (AICc) for each
such model. The genetic algorithm searches for the number and placement of break-
points yielding the best AICc and also reports confidence values for inferred breakpoint
locations based on the contribution of each considered model weighted by how well
the model fit the data. For computational expedience, the current implementation of
GARD infers topologies for each segment using Neighbor Joining (Saitou and Nei, 1987)
based on the TN93 pairwise distance estimator (Tamura and Nei, 1993) and then fits a
user-specified nucleotide evolutionary model using maximum likelihood to obtain AICc

scores.

Example Analysis 1 We will demonstrate the use of GARD, as well as its benefits
for downstream analysis, using a dataset consisting of 13 glycoprotein sequences from
Cache Valley Fever virus (cvf.fna). We will first use GARD to detect recombination
in this dataset, and then we will process both the GARD-informed data and the orig-
inal alignment (with no recombination assumed) with FEL to see how the presence of
recombination may confound selection inference.

Importantly, GARD specifically requires the use of HyPhy’s MPI-enabled executable,
HYPHYMPI. To run GARD from the command line, you will need an operating system
with a MPI headers and libraries installed so that this executable can be compiled.
Here, we will describe how to use GARD from the command line, but we emphasize
that GARD is fully implemented and available on datamonkey.org and takes the
same input options described here.

To run GARD, open a terminal session and start HYPHYMPI in the appropriate
MPI environment (e.g. mpirun in OpenMPI) from the command line to launch the
HyPhy analysis menu. Enter 12 (Recombination) and then 1 to reach the GARD
analysis menu, and supply values for the following prompts:

1. Nucleotide file to screen:. Provide the full path to the dataset of interest:
/path/to/data/cvf.fna.

2. Please enter a 6 character model designation (e.g:010010 defines HKY85).
This option controls which nucleotide substitution model is to be used for anal-
ysis, using PAUP notational shorthand. The six character shorthand allows the
user to specify the entire spectrum from F81 (000000) to GTR (012345), which
we recommend as default option. Provide the value 012345 for this prompt.

3. Rate variation options. This option determines how site-to-site rate variation
should be modeled. The option None will discount site-to-site rate variation,
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allowing the analysis to run several times faster than other options but also creating
the risk of mistaking rate heterogeneity for re- combination. As such, we can
only recommend this option for extremely small alignments (i.e. 3-5 sequences).
The option General Discrete (the default) models rate variation using an N
bin general discrete distribution, and option Beta-Gamma models rate variation
using an adaptively discretized distribution, a more flexible version of the standard
Gamma+4 model. Enter option 2 to select the General Discrete model.

4. How many distribution bins [2-32]?. If rate variation was selected in the
previous step, this option allows the user to decide how many different rate classes
should be included in the model. We recommend using 3 rate classes by default,
as both General Discrete and Beta-Gamma distributions are flexible enough to
reliably capture rate variability in the majority of alignments with only a few rate
classes. Therefore, enter the value 3.

5. Save results to. For this option, provide a full path to the output file to which you
would like GARD to write results. The supplied file name will ultimately contain
an HTML-formatted summary of the analysis. HyPhy will generate several other
files with names obtained by appending suffixes (as in <file name>_suffix to
the main result file. In particular, the _finalout file stores the original alignment
in NEXUS format with inferred non-recombinant sections of the alignment saved in
the ASSUMPTIONS block and trees inferred for each partition in the TREES block.
This NEXUS file can be input into many recombination-aware analyses in HyPhy
and other programs that can read NEXUS. The _ga_details file contains two
lines of information about each model examined by the genetic algorithm: its AICc
score and the location of breakpoints in the model. Finally, the _ga_splits file
stores information about the location of breakpoints and trees inferred for each
alignment region under the best model found by the GA.

GARD will now run to completion, printing status indicators to screen while it runs:

Listing 8: Partial GARD output
Fitting a baseline nucleotide model...
Done with single partition analysis. Log(L) = -5921.9511901113, c-AIC = 11914.85153276497
Starting the GA...

GENERATION 2 with 1 breakpoints (~0% converged)
Breakpoints c-AIC Delta c-AIC [BP 1]

0 11914.85
1 11804.56 110.291 1393

GA has considered 92/ 328 (92 over all runs) unique models
Total run time 0 hrs 0 mins 2 seconds
Throughput 46.00 models/second
Allocated time remaining 999 hrs 59 mins 58 seconds (approx. 165599908 more models.)
...
GENERATION 52 with 4 breakpoints (~100% converged)
Breakpoints c-AIC Delta c-AIC [BP 1] [BP 2] [BP 3] [BP 4]

0 11914.85
1 11804.56 110.291 1445
2 11783.92 20.638 617 1490
3 11778.94 4.978 587 962 1475
4 11778.94 0.000 587 962 1475

GA has considered 268/ 473490550 (1356 over all runs) unique models
Total run time 0 hrs 4 mins 2 seconds
Throughput 5.60 models/second
Allocated time remaining 999 hrs 55 mins 58 seconds (approx. 20170544.82644628 more models.)
Performing the final optimization...

Interpreting results GARD found evidence of recombination in this data set with
three breakpoints, yielding a 135.9 point AICc improvement over the model without
recombination. Among all models with three breakpoints in the Cache Valley Virus
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glycoprotein alignment, the best model places them at nucleotides 587, 962, and 1475.
The score Importantly, if GARD had reported that the best model had 0 breakpoints,
we could conclude that no evidence of recombination had been found. Note that because
genetic algorithms are stochastic, there is no guarantee that replicate runs will converge
to exactly the same quantitative results. When there is a strong signal of recombination
breakpoints in the data, however, the qualitative results (number and general location
of breakpoints) should be fairly robust.

Example Analysis 2 The NEXUS file that GARD produced is a partitioned dataset,
wherein different groups of sites are be described by different trees. Most HyPhy selec-
tion analyses discussed here4, including MEME, FUBAR, FEL, SLAC, and BUSTED,
are able to analyze partitioned data. To demonstrate the importance of screening for
recombination, we will now compare results for a FEL analysis performed on the origi-
nal alignment of 13 Cache Valley Virus glycoproteins, as well as on the GARD-inferred
partitioned alignment. All steps here were carried out as described earlier in this chap-
ter.

Interpreting results FEL inference on the GARD-processed partitioned Cache
Valley Virus data does not detect sites under selection at P ≤ 0.1. By contrast, FEL
inference on the unpartitioned Cache Valley Virus data (i.e. not pre-screened for re-
combination) detects three positively selected sites at P ≤ 0.1 (212, 516, and 558 at
P = 0.08, P = 0.03, and P = 0.09, respectively). From these results, we can clearly tell
that not screening for recombination has the potential for adverse consequences includ-
ing an increased false positive rate as seen here. As such, we strongly encourage users to
screen alignments for recombination if such processes are suspected before proceeding
to selection detection.

Synonymous rate variation
We demonstrate the importance of considering synonymous rate variation for selection
inference using a dataset of 10 mammalian CD2 genes, which code for a specific T-cell
surface adhesion molecule (Lynn et al., 2005). We use FEL to detect selection in this
dataset under two specifications: with synonymous rate variation (“Yes” in prompt 4 in
the FEL analysis menu), and without synonymous rate variation (“No” in prompt 4 in
the FEL analysis menu).

Interpreting Results At P ≤ 0.1, analysis of CD2 with synonymous rate variation
revealed a total of 14 sites under positive selection. By contrast, CD2 analysis with FEL
without dS variation only detected 4 sites under positive selection. Similarly, analysis
with dS variation revealed 27 sites under purifying selection, but analysis without dS
variation revealed only 15 sites under purifying selection. Most importantly, all sites
detected when dS was fixed to 1 were a subset of the sites identified by the model
with dS variation (Figure 5). Together, these results demonstrate that ignoring dS
variation can induce both an increased false negative rate for identifying sites under
positive selection as well as an overall decrease in power to detect any selective regime.

4Note that neither aBSREL nor RELAX accept partitioned data because they require a consistent phy-
logeny to define branch sets
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We acknowledge that it is possible that the opposite conclusion might be true, namely
that that additional sites identified by FEL with dS variation might instead be false
positives. However, in our experience, this is much less frequently the case (Kosakovsky
Pond and Frost, 2005).

Tips and tricks
Here we provide some helpful notes on HyPhy usage.

• An actively-maintained board for usage questions and filing bug reports is available
at https://github.com/veg/hyphy/issues.

• Each HyPhy analysis described here will export a JSON file. This file can either
be uploaded to HyPhy Vision for visual examination, or it can be easily parsed
using a standard scripting language using standard packages, for example the json
package in Python or the jsonLite package in R. All fields used in these output
files are defined [at this link].

• Mac OS(X) users may need to install a new set of compilers (i.e. gcc-6) that are
compatible with openMP in order to have full functionality from the HYPHYMP
executable, as is described on the HyPhy website.

Exercises
1. Earlier, we performed a BUSTED analysis without designating a specific subset

of test lineages. For this exercise, we will analyze the HIV-1 transmission dataset
with BUSTED two different ways: testing all branches, and testing only recipient-
derived HIV-1 sequences. The input data for this exercise, with an appropriately
labeled phylogeny, is available in exercises/hiv1_transmission_exercise1.fna.
For select branches labeled All or test as the test lineages.

• Is there evidence (compare model fits using the small sample AIC) that test
branches have a different selective regime than the rest of the tree?

• The entire data set should provide evidence for episodic diversification, but
the recipient only analysis should return a negative result. What does this
mean biologically, i.e. where does the selection signal come from?

2. Investigate the effect of recombination of site-specific inference of episodic selection
using MEME. Run MEME on exercises/cvf.fna (single partition data, i.e.
assuming no recombination), and then on the same dataset screened for recombi-
nation using GARD exercises/cvf-gard.nex, testing for selection on all
branches, with P=0.1. Compare the list of sites detected to be under selection by
the two analyses.

• Which analysis generated more positive results?
• Do you think these results are true of false positives? How does this compare

to the FEL analysis we described in the text?
• Compare site-wise estimates of substitution rates (e.g. α), between the two

analyses. Is there a discernible bias introduced by not accounting for recom-
bination.
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3. When analyzing intra-species or intra-host data, dN/dS estimates may be inflated
due to the fact that not all observed sequence variation is due to substitutions, but
some are simply mutations that have not yet been filtered by selection (e.g. Pond
et al. (2006)). In other words, dN/dS may be elevated by intra-species / intra-
host polymorphism that need not be attributable by positive selection. One simple
approach to mitigating this undesirable effect is to restrict site-specific analyses
to Internal branches only. This is because internal branches encompass at
least one step that is visible to selection (transmission and/or multiple rounds of
replication), and are less likely to contain spurious polymorphic variants. Apply
MEME and FEL to an intra-host sample of HIV-1 sequences from an infected
individual analyzed in Lorenzo-Redondo et al. (2016), first choosing to test All
branches, and next choosing Internal branches.

4. Compare the lists of selected sites between All/Internal analyses. How different
are they?

5. Use RELAX to formally test whether or not selective regimes (dN/dS distribu-
tions) are different between terminal and internal branches.
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Figures
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D

Figure 1: Example analysis visualization in HyPhy-Vision of BUSTED results. (A) The summary section
provides a brief overview of the analysis performed, including information about the inputted data (which
can be downloaded via the linked file name) and primary results from the hypothesis test performed. (B) The
model statistics section provides information about models fitted to the data. In BUSTED, this section
additionally includes an interactive display of site evidence ratios, which can be interpreted as a descriptive
measure for which sites may have contributed to the selection signal. (C) The tree section displays the
phylogeny as fitted under all inferred models and data partitions, if specified. Tree views can be toggled
under the Options dropdown menu. (D) Graphical views of each model’s inferred ω distribution can be
viewed when clicking on a given row in the Model fits table seen in (B).
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Figure 2: HyPhy-Vision tree viewer depicting the fitted aBSREL Adaptive model to HIV-1 data. Branches
are colored by their inferred ω distribution, as indicated in the legend. Lineages identified as positive selection
at P < 0.05 after correction for multiple testing are shown with thick branches, with color representing the
relative proportions of inferred ω categories. Note that taxon labels beginning with ‘0554’ represent HIV-1
sequences derived from the donor patient, and labels beginning with ‘0557’ represent HIV-1 sequences derived
from the recipient patient.
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Figure 3: Phylogeny of H3 hemagglutinin sequences analyzed here. Tip colors indicate those selected for
each dataset.
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Figure 4: Phylogenetic incongruence caused by the presence of a recombinant sequence in an alignment.
Sequence R is a product of homologous recombination between sequences A and B. Phylogenies reconstructed
from sequences A,B,R and an outgroup sequence (O) will differ based on which part of the alignment is being
consideredl to the left of the breakpoint, R clusters with A, whereas to the right of the breakpoint R clusters
with B.
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Figure 5: Sites identified as positively (red) and negatively (blue) selected in CD2 at P ≤ 0.1 by FEL run
with (above the line) and without dS variation (below the line). Sites with arrows represent those identified
as selected by FEL with dS variation but that were not identified by FEL when dS variation was ignored.
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