
!

Operation
1/25/2004

Operation of logical negation.

!x

1. x is numbers:
– If the number is non-zero returns 0 (false), otherwise returns 1(true).

Example

N/A

!=

Operation
1/25/2004

Test for inequality.

x!=y

1. x and y are both numbers:
– returns 1 if |x-y|/min(|x|,|y|)>=machine epsilon and 0 otherwise
2. x and y are strings
– tests for case sensitive string inequality

Example

N/A

#include

Batch language command
2/4/2004

File inclusion command. The file specified as the argument of the include command
is inserted in place of the #include line.

#include "filename";

filename must be given relative to the batch file which contains the #include statement.

‘;‘ at the end of the command is required.

The inclusion is processed at COMPILE time.

1

Example

#include "Models/F84.def";

$

Operation
2/3/2004

Operation of integer division, elementwise matrix multiplication, regular expression
matching in strings and tree splitting.

x$y

1. x and y are both numbers:
– rounds both arguments and then returns the result of integer division
2. x and y are matrices of the same dimension
– multiplies matrices element by element
3. x and y are strings
– tries to find a regular expression defined by y in x. Returns a 2x1 matrix which contains 0 based starting and ending
offsets of the first match in x. If no match is found, then both offsets are set to -1. Regular expressions are supported by
incorporation of a C++ adapted version of GNU POSIX compliant library http://www.gnu.org/directory/regex.html
4. x is a topology or a tree with at least 10 leaves, y is a positive number:
– splits the tree into y subtrees of approximately equal size; returns a matrix of names of internal where split points were.

Example

123$4
/* returns 30*/

{{1,2}{3,4}}${{5,10}{15,20}}
/*returns
{{ 5, 20}
{ 45, 80}}*/
"abcdef"$"cd."
/* returns {{2}{4}}*/
"abcdef"$"cd.$"

/* returns {{-1}{-1}}*/

%

Operation
3/1/2004

Operation of remainder of integer division. Operation of case insensitive string
comparison. Operation of matrix sorting.

x%y

1. x and y are both numbers:
– Rounds both arguments and then returns the remainder of integer division.
2. x and y are strings
– compares x and y lexicographically, ignoring case.
3. x is a matrix and y is an integer
– sorts the matrix on column y

Example

2

7%3
/* returns 1*/

"hAckErS"%"hackers"
/* 1 - true */

m = {{5,3,2,6,10,-1}{0,1,2,3,4,5}};
m = Transpose(m);
ms = Transpose(m%0);

fprintf (stdout, ms);

/* output -
{
{ -1, 2, 3, 5, 6, 10}
{ 5, 2, 1, 0, 3, 4}
}
*/

&&

Operation
9/15/2005

Operation of conjunction (logical AND) or change case/character escape in a
string.

x&&y

1. x and y are both numbers:
– if both arguments are non-zero returns 1(true), otherwise returns 0.
2. x is a string and y is
– 0: returns lower cased x,
– 1: returns upper cased x.
– 2: returns a version of the string with some formatting characters escaped

Example

N/A

*

Operation
1/24/2004

Operation of numeric and matrix multiplication or string streaming.

x*y, or , x y(implied multiplication).

1. x and y are both numbers:
– performs numeric multiplication.
2. x is a matrix and y is a number:
– term wise multiplication of the matrix.
Note: number * matrix will return an error.
3. x and y are matrices, whose dimensions are compatible, i.e the number of columns in the x is the same as the number
of rows in y
– matrix multiplication
4. x is a string and y is:
a). Positive number:
– clears x and allocates at least y bytes for storage in x
b). Zero (or negative number):
– finalizes x. MUST be called before x is usable
c). Another string:
– appends y to the end of x, automatically allocating memory if needed.

3

Note: the purpose of this command is to create large strings by writing small fragments to them and to avoid unneeded
memory swapping.

Example

2(x+y)

{{1,2}{3,4}}*(-1)
/* returns {{-1,-2}{-3,-4}})*/
{{1,1}}*{{2}{3}}
/* (returns {{5}}) */

largeString = "";
largeString*1024;
for (k=1; k<100; k=k+1)
{
largeString*("The square of "+k+" is "+k2̂+" ");
}
largeString*0;
fprintf (stdout, largeString);

+

Operation
9/14/2005

Operation of numeric and matrix addition as well as string conversion and con-
catenation.

x+y

1. x and y are both numbers:
– performs numeric addition.
2. x and y are both matrices of the same dimensions:
– performs matrix addition.
3. x and y are both matrices:
– performs matrix addition.
4. x is a string and y is an arbitrary object:
– converts y to a string and concatenates the result to x.
5. x is a number and y is an string
– converts y to a number and adds it to x
6. x is a matrix and y is a number
– Adds y to every element of x. Order is important (e.g. number+matrix won‘t work). To subtract a number use matrix
+ (-number)

Example

str = "Hello "+"World";
/*String Concatenation:
str‘ now holds "Hello World"*/

Tree t = ((a,b),c);
tree string=""+t;
/*Object conversion
tree string= now holds a string representation of t */

-

Operation
1/23/2004

Operation of numeric or matrix subtraction.

x-y, or -x (unary minus)

4

1. x and y are both numbers:
– performs numeric subtraction.
2. x and y are both matrices of the same dimension:
– performs matrix subtraction.

Example

N/A

/

Operation
1/25/2004

Operation of floating point division or wildcard string comparison

x/y

1. x and y are both numbers:
– performs numeric division
2. x and y are strings
– compares x to y, allowing for ‘*‘ wildcards in y (only in y).

Example

"Unix"/"*nix"
/*1 - true*/
"Linux"/"*nix"
/*0 - false*/

:=

Batch language command
2/4/2004

Dependance assignment operator. Assigns the formula defined by the rhs to the
lhs. This operator should be used to constrain variables before optimization.

LHS := RHS;

LHS must be an identifier or a matrix element accessed by the bracket operator. If LHS is an identifier of a variable
which doesn‘t exist, the variable will be created.

Example

a=2;
b=3;
c:=a+b;
d=a+b;
a=4;
fprintf (stdout, " ", a," ",b," ",c," ",d, " ");

/* outputs 4 3 7 5.*/

5

<

Operation
3/3/2004

Operation ‘less‘.
Also computes log likelihood of a markov chain realization, given the rate
matrix.

x<y

1. x and y are both numbers:
– returns 1 if x<y (within machine epsilon) and 0 otherwise
2. x and y are both strings:
– performs a case-sensitive < lexicographic comparison
3. x is a 3xN matrix and y is an MxM matrix:
– using MxM as the rate matrix for an M state Markov chain, computes the log-likelihood of the realization specified in
x. Each column in x is has the ‘from‘ state in row 1, the ‘to‘ state in row 2 (both must be integers in [0,M-1]), and row 3
is the time over which the step occurs.

Example

a = 1;
rates = {{*,a,a,a}{.5*a,*,a,a}{a,a,*,a}{a,a,a,*}};
jumps = {{0,1,2,3}
{1,2,3,0}
{0.1,0.2,0.3,0.05}};
/* chain 0->1->2->3->0 with jump times of 0.1, 0.2, 0.3 and 0.05 */

fprintf (stdout, " ", jumps<rates, " ");

<=

Operation
1/25/2004

Operation ‘less than or equal to‘, and tree pattern matching.

x<=y

1. x and y are both numbers:
– returns 1 if x<=y (within machine epsilon) and 0 otherwise
2. x and y are both strings:
– performs a case-sensitive <= lexicographic comparison
3. x and y are both topologies or trees:
– tests to see whether tree x matches pattern defined by tree y, i.e. whether y can be obtained from x by collapsing
internal branches, sibling swapping and rerooting.

Example

Topology t1=(((1,2),3),(4,5),6);
Topology pattern1 = (1,2,3,(4,5,6));
Topology pattern2 = (1,2,3,(6,(5,4)));
Topology pattern3 = ((1,2,4),3,5,6);

t1<=pattern1;
t1<=pattern2;
/* both true */
t1<=pattern3;
/* false */

6

=

Batch language command
2/4/2004

Value assignment operator. Assigns the current value of the rhs to the lhs. To
create dependancies use ‘:=‘.

LHS = RHS;

LHS must be an identifier or a matrix element accessed by the bracket operator. If LHS is an identifier of a variable
which doesn‘t exist, the variable will be created.

Example

a=2;
b=3;
c:=a+b;
d=a+b;
a=4;
fprintf (stdout, " ", a," ",b," ",c," ",d, " ");

/* outputs 4 3 7 5.*/

==

Operation
1/25/2004

Test of equality.

x==y

1. x and y are both numbers:
– returns 1 if |x-y|/min(|x|,|y|)<machine epsilon and 0 otherwise
2. x and y are strings
– tests for case sensitive string equality
3. x and y are topologies or trees
– compares trees for equality in the sense of unrooted labeled trees, i.e. if one tree can be rerooted and sibling swapped
to obtain the other - returns true.

Example

Topology t1=((1,2),3,4);
Tree t2=(1,(3,4),2);
Topology t3=(1,4,(2,3));

t1 == t2;
/* 1 - true */
t1 == t3;
/* 0 - false */

>

Operation
1/25/2004

Operation ‘greater than‘. Also can be used to build tree matrix representations
from a square distance matrix.

x>y

1. x and y are both numbers:
– returns 1 if x>y (within machine epsilon) and 0 otherwise

7

2. x and y are both strings:
– performs a case-sensitive > lexicographic comparison
3. x is an NxN upper triangular matrix:
– performs a neighbor joining algorithm on the matrix and returns a ”parent” flat tree representation (an 3x(2N-3)
matrix) for more details refer to example files.

Example

N/A

>=

Operation
1/25/2004

Operation ‘greater than or equal to‘. Also can be used to build trees from parent
node representations.

x>=y

1. x and y are both numbers:
– returns 1 if x>=y (within machine epsilon) and 0 otherwise
2. x and y are both strings:
– performs a case-sensitive >= lexicographic comparison
3. x is an Nx3 matrix specifying a tree (see example files for more detail), such as ones returned by the neighbor joining
operation, and y is the number of tree leaves (an interger <= (N-3)/2):
– returns a ”flat” tree representation as another matrix

Example

see example files for more details on case 3.

ACCEPT BRANCH LENGTHS

Constant
2/5/2004

Whether or not to accept branch lengths in provided in the tree string (ON by
default).

N/A

If set to ‘0‘, branch lengths in the tree string are ignored.

Example

N/A

ACCEPT ROOTED TREES

Constant
2/5/2004

Whether or not to unroot rooted trees (OFF by default).

8

N/A

If set to ‘1‘, no automatic tree unrooting will be done.

Example

Topology unrooted= ((1,2),3);
ACCEPT ROOTED TREES=1;
Topology rooted = ((1,2),3);
ACCEPT ROOTED TREES=0;

ALLOW BOUNDARY

Constant
2/3/2004

If true (default) then variables are allowed to assume boundary values.

ALLOW BOUNDARY = 0 or 1;

If ALLOW BOUNDARY = 0, then no independent variable will be allowed to assume values closer than 10(̂-25) to the
boundary. You may want to use this setting if the actual boundary value results in a singular behavior. It is better to set
boundary values for each parameter individually if needed.

Example

N/A

ASSIGNED SEED

Built-in function
2/4/2004

If ASSIGNED SEED is set, then it is fed to the standard random number gener-
ator seed function. Can be used to replicate simulation results. DISABLED IN
VERSION 0.99 AND ABOVE.

ASSIGNED SEED=value;

Use SetParameter to specify a user value for the seed.

Example

N/A

AUTO PARALLELIZE OPTIMIZE

Constant
9/14/2005

[MPI Only] Tries to automatically spread likelihood function evaluation across
multiple nodes.

AUTO PARALLELIZE OPTIMIZE = 0 (default) or 1;

9

Works only for some types of likelihood functions (will report a warning message if auto-parallelization is not possible).
Works best for long sequences; involved substantial overhead and may not scale linearly (but does linearly (with
coefficient < 1) if sequences are long enough).

Example

AUTO PARALLELIZE OPTIMIZE = 1;
Optimize (res, lf);
AUTO PARALLELIZE OPTIMIZE = 0;
/* requires an MPI environment to have an effect; flag ignored in single thread or p-thread builds).

Abs

Built-in function
9/16/2005

Absolute value, matrix norm, string length and tree flat representation.

Abs(x)

1. x is a number:
– returns |x|.
2. x is a vector (column or row matrix):
– returns the Euclidean norm (”length”) of x.
3. x is a matrix which is not a vecor:
– returns maximum absolute value among matrix elements.
4. x is a string
– returns character length of x
4. x is a tree or topology:
– returns a 1xN matrix (N is the total number of tree nodes), where each entry corresponds to a node in a post-order
traversal of the tree and contains the (0-based) index (in post order traversal) of that node‘s parent (-1 for the root)

Example

Abs({{1,2}{-4,3}})
/*returns 4*/

Abs ("foobar")
/*returns 6.*/

Abs({{1,1}})
/*returns 1.41421 (i.e. the square root of 2).*/

Topology t=((1,2)N1,3,4);
bp = Abs (t);
branchNames = BranchName(t,-1);
for (bi=0; bi<Columns(bp); bi=bi+1)
{
parentIndex = bp[bi];
if (parentIndex >=0)
{
fprintf (stdout, "Node ", branchNames[bi], " <= Parent ", branchNames[parentIndex], " ");

}
else
{
fprintf (stdout, "Node ", branchNames[bi], " is the root ");

}
}
/* returns {{2,2,5,5,5,-1}};
the post order traversal of the tree is:
1,2,N1,3,4,root; the parent of 1 and 2 is traversed 3, the parent of N1,3 and 4 is the root, which is traversed 6th. */

Arctan

Built-in function
1/25/2004

Inverse Tangent.

10

Arctan(x)

1. x is a number:
– Returns the inverse tangent of x.

Example

N/A

BASESET

Data File formatting instruction
2/4/2004

BASESET is used to indicate what characters form the fundamental states of the
data.

$BASESET:"new set" (new line char)

If ”new set” = ”BASE20”, the data is assumed to contain aminoacid info (with standard ambigutity characters).

Must be present in the file before any data begins and before any TOKEN directives are issued. The new character set is
simply a string where each character is understood as a new state and the first character is mapped to state ‘0, the 2nd -
to state ‘1‘etc.

Only ASCII characters with codes 30 to 127 should be used for definition of the base set, and the translation is NOT case
sensitive.

Does not apply to NEXUS files, which have their own mechanism for defining base character sets.

Example

$BASESET:"ACGU" (RNA data)
$BASESET:"01" (binary data)

BRACKETING PERSISTENCE

Constant
2/4/2004

In conjunction with randomized order bracketing, specifies, how many times, on
average each variable will be bracketed. Defualt value is 2.5.

BRACKETING PERSISTENCE=value;

This options is only meaningful when an appropriate optimization method is chosen by setting
OPTIMIZATION METHOD.

Example

N/A

11

Beta

Built-in function
2/3/2004

The ‘Beta‘ function.

Beta(x,y)

1. x and y are real numbers, which are not negative integers:
– computes Beta(x,y)=Gamma(x)Gamma(y)/Gamma(x+y), where Gamma is the gamma function.

Example

N/A

Bootstrap

Batch language command
2/4/2004

Can be used to create samples (with replacement) of blocks of columns of ‘unit‘
length of existing data sets or data set filters.

DataSetFilter <filterid> = Bootstrap (datasetid, unit, vertical partition);

‘datasetid‘ must refer to an existing data set or a data set filter.
‘unit‘ is a positive integer.
The third argument is optional and can be used to permute a subset of the ‘filterid‘

The specification of vertical partition is identical to that of ‘CreateFilter‘.

Example

N/A

BranchCount

Built-in function
2/4/2004

Returns the number of internal branches in the tree.

BranchCount(tree ident);

‘tree ident‘ must be an existing tree or topology variable.

Example

N/A

12

BranchLength

Built-in function
7/9/2004

‘BranchLength‘ returns the expected number of substitution along a given branch
using the model and parameter value currently attached to the branch. Also can
be used to compute path lengths between any two nodes in the tree.

BranchLength (treeID, branch index);

1. ‘treeID‘:
– is an exisiting tree;
2. ‘branch index‘:
– the integer index of the branch whose length we wish to retrieve, in the post-order traversal sequence.
– if branch index = -1, then a row matrix with branch lengths filled out in the post-order traversal order is returned.
– if branch index is a ‘;‘ separated list of two node names in the tree, returns the length of the path between the two
nodes.

The value of 0 is returned for undefined cases, such as missing models (and no ‘in-string‘ value). If no models are defined,
but the tree was initialized with a string containing branch lengths - those will be returned.

Example

/* assuming that aTree includes nodes named
Leaf1 and Node23, the statement below will return the length of the path between these two nodes */

BranchLength (aTree,"Leaf1,Node23");

BranchName

Built-in function
3/3/2004

Returns a string containing the name of an internal node of the tree.

BranchName(tree ident, node index);

Valid index range is 0 to BranchCount (tree ident)-1.

The name of the node is of the form ‘Node1‘ rather than ‘Tree.Node1‘.

If node index = -1, then a string row matrix with branch names filled out in the post-order traversal order is returned.

‘tree ident‘ must be an existing tree or topology variable.

Internal nodes not explicitly named during tree construction will be assigned default names of the form NodeX, where X
is the rank of this node during a pre-order traversal of the tree.

Example

13

Tree tr = ((a,b)int1,c,d);
tName = BranchName (tr, 0);

/*Result: "int1".*/

Names = BranchName (tr, -1);

/*Result: {{"a","b","int1","c","d","Node0"}}*/

CACHE SUBTREES

Constant
2/4/2004

Subtree caching. On by default.

CACHE SUBTREES= value;

1. value = 1:
– (default) HyPhy uses a caching scheme to speed up likelihood caclulations.
2. value = 0;
– caching turned off. A little less memory is but it is not worth the performance loss.

Example

N/A

CATEGORY SIMULATION METHOD

Constant
2/4/2004

Controls how category variables values are sampled.

CATEGORY SIMULATION METHOD=1 or 2;

1. value = 1:
– use discretized distibutions to sample values from.
2. value = 2:
– (default) use the underlying continuous distribution whenever possible.

Example

N/A

CChi2

Built-in function
2/3/2004

The cumulative Chi squared distribution and fisher exact test.

CChi2 (x,n)

14

1. x and n are positive numbers:
– returns the value of the Chi2 C.D.F (in [0,1]). CChi2(x,n) = P{t<=x}, where t is a random variable distributed as
Chi-squared with n degrees of freedom, i.e. as the sum of squares of n independent standard normal distributions

2. x is a matrix and n is a number:
– returns the p-value of the Fisher exact (if n is 0) or a chi-2 approximation (if n is 1) for the contigency table specified
by x. This test is computed using the Mehta-Patel network algorithm adapted from
http://portal.acm.org/citation.cfm?id=214326

Example

N/A

CGammaDist

Built-in function
2/3/2004

The cumulative gamma distribution.

CGammaDist(x,a,b)

1. x and b are positive numbers, a is not a negative integer:
– returns the value of the Gamma C.D.F (in [0,1]). CGammaDist(x,a,b) = P{t<=x}, where t has gamma distribution
with the shape parameter a, and the ‘mean‘ parameter b.

Example

N/A

CLEAR FILE

Constant
1/19/2000

Used as an argument to FPRINTF, forces the target file to be cleared.

fprintf (file name,CLEAR FILE,<more arguments>);

Use at the beginning of the file to clear a results file or something of the sort.

Example

N/A

COVARIANCE PARAMETER

Constant
9/14/2005

Set this parameter to a string value to direct the function ‘CovarianceMatrix‘ to
compute the confidence intervals with this parameter only, treating other parameter
estimates as true values.

15

COVARIANCE PARAMETER = "id"

Can either be:
1. A string
– only that parameter is profiled or has empirical Fisher information estimated
2. An associative array
– estimate profile intervals (coordinate wise) or empirical Fisher information for that subset of parameters

Example

/* assuming that "T Scale" is a parameter in the likelihood function ‘lf‘ */
COVARIANCE PARAMETER = "T Scale";
COVARIANCE PRECISION = 0.95;
CovarianceMatrix (cmx, lf);

/* associative array approach; assumes T Scale and kappa and omega are all model parameters in lf */
COVARIANCE PARAMETER = {};
COVARIANCE PARAMETER {"T Scale"}=1;
COVARIANCE PARAMETER {"kappa"} = 1;

COVARIANCE PARAMETER {"omega"} = 1;

COVARIANCE PRECISION = 0.95;
CovarianceMatrix (cmx, lf);

COVARIANCE PRECISION

Constant
2/4/2004

A constant which determines what method is used by CovarianceMatrix in com-
puting the numerical Hessian.

COVARIANCE PRECISION = value;

1. value = 1
– (default) use a first order difference formula for partial derivatives (one function evaluation per matrix cell)
2. value = 2
– use a second order difference formula for partial derivatives (4 function evaluations per cell)
3. value between 0 and 1
– use a likelihood profile approach (each variable is done independently) and a chi2̂ approximation with (1-value) serving
as the p-value.
4. value is negative
– use a likelihood profile approach (each variable is done independently), with (-value) serving as the cutoff value for the
likelihood difference.

Example

N/A

Category

Batch language command
2/4/2004

Used to define a category (rate variation) variable.

category id = (number of intervals, weights, method for representation, density, cumulative, left bound, right

bound, <mean cumulative function>,<hidden transition model>);

1. number of intervals:
– number of different categories;

16

2. weights:
– probability for each interval. Could be set to Equal, a single row matrix of weights, or a formula in terms of n , where
n runs from 0 to number of intervals:
3. method for representation:
– how to pick a representative for each category. Can be set to MEAN, MEDIAN or SCALED MEDIAN. Only
meaningful for variables coming from continuous distributions. SCALED MEDIAN is the same as median, except the
mean of the discrete approximation is scaled to match the mean of the continuos generator.
4. density or covariate:
– the formula for the generating continuos density function (in terms of x). Leave blank to specify a discrete
distribution. Alternatively, you can provide the identifier of an existing discrete independent category variable to indicate
that the present variable is defined conditiontally.
5. cumulative:
– the formula for the cumulative probability function (in terms of x). Leave blank if not known. Specify a row matrix
of values for a discrete distribution here. For a conditionally specified variable, provide an MxN rate matrix, where row
‘i‘ defines the values of current category variable in given that the covariate assumes the i-th values from its range.
6. left bound:
– left bound for x in the continuous distribution
7. right bound:
– right bound for x in the continuous distribution
8. optional mean cumulative function:
– if known, provide the formula for mean over interval (left bound, x) in terms of x
9. hidden transition model:
– (optional) provide the identifier of an existing model, to stipulate that the values of the category variable are spatially
correlated via the Markov transition matrix given by that model. The number of states in the Hidden Markov model and
the current category variable must be the same.

Example

See files in ‘Examples‘.

ChoiceList

Batch language command
2/4/2004

Used to present the user with a list of choices, and guides the user through the
process of selecting one (or more) of them. If the user makes a valid selection, then
the string value of the selection is stored in the variable SELECTION STRINGS.

ChoiceList (result,"Title",selection length,skip flag,"option 1 name","option 1 description","option 2 name","option

2 description",...,"option N name","option N description"); or

ChoiceList (result,"Title",selection length,skip flag,object)

1. ‘result‘:
– holds the choice of the user. If the user selected one option only (triggered by ‘selection length flag‘), ‘result‘ holds
either -1 (the selection was cancelled), or the 0 -based index of the selected option. If more than option were selected
‘result‘ is a vector with indices of selections. If the [0] element of ‘result‘ is -1 then the selection process was cancelled.
2. ‘Title‘:
– is the title of the selection list
3. ‘selection length‘:
– indicates how many choices the user must make. 0 means that the user is allowed to make an arbitrary (1 or more)
number of choices
4. ‘skip flag‘:
– either SKIP NONE, so that all selections are available to the user or a vector of selection indices to skip
5. The list of selections afterwards is simply a collection of available choices.

You may place an object identifier instead of the explicit list of selections. It could be:

1). A dataset (the selections are taxa names)
2). A datasetfilter (the selections are taxa names).

17

3). If this argument is the literal ”LikelihoodFunction” then the list of currently defines likelihood functions will be
generated. 4). If this argument is the literal LAST MODEL PARAMETER LIST, then the list of parameters of the
model which was last declared will be generated.
5). An Nx2 string matrix containing pairs of choices.

This list will later include other objects.

Example

See TemplateBatchFiles.

ClearConstraints

Batch language command
2/4/2004

Used to remove constraints on variables.

ClearConstraints(var1,var2,...,varN);

All var‘s must reference existing variables.

Call this on category variables if you need to redefine them as ‘regular‘ variables.

Example

ClearConstraints(tr.Node1.a,tr.Node1.b);

Columns

Built-in function
2/3/2004

The number of columns function.

Columns(m)

1. m is a matrix:
– returns the number of columns in m

Example

N/A

18

Combine

Batch language command
2/4/2004

A command to merge several data sets into one. If the first argument is ‘purge‘,
then all the data sets used in the merge operation will be deleted after the operation
is finished. The resulting data set contains all the data from the component data
sets as stacked columns, i.e. column 1 is a vertical stack of all columns 1 from the
component data sets.

DataSet datasetid = Combine(purge,datasetid1,...,datasetidn);

All ‘datasetid‘ must refer to existing data sets. If the number of sites varies from data set to data set, the missing sites
will be padded with deletion symbols. ‘purge‘ is optional.

Example

DataSet ds = Combine(data1,data2,data3);
DataSet ds = Combine(purge,data1,data2,data3);

Concatenate

Batch language command
2/4/2004

A command to merge several data sets into one. If the first argument is ‘purge‘,
then all the data sets used in the merge operation will be deleted after the operation
is finished. The resulting data set contains all the data from the component data
sets as concatenated rows, i.e. row 1 is the concatenated rows 1 of all component
data sets.

DataSet datasetid = Concatenate(purge,datasetid1,...,datasetidn);

All ‘datasetid‘ must refer to existing data sets. If the number of species varies from data set to data set, the missing rows
will be padded with deletion symbols. ‘purge‘ is optional.

Example

DataSet ds = Conacatenate(data1,data2,data3);
DataSet ds = Conacatenate(purge,data1,data2,data3);

ConstructCategoryMatrix

Batch language command
2/4/2004

Produces a matrix of category assignments for the sites of data analyzed with
category variables.

ConstructCategoryMatrix(receptacle, likelihood function, short or long);

‘receptacle‘ is the matrix to store category assignments,

‘likelihood function‘ is a likelihood function identifier,

19

and short or long is a flag which indicates whether to produce a matrix which for each site will contain a row of
conditional likelihoods for each category, or rather just the index of the maximally likely category.

The resulting matrix will contain a column for each site in the data (left to right).

If short or long is set to COMPLETE, the long matrix is produced. Any other value will generate a short matrix.

Example

ConstructCategoryMatrix(cm, lf, COMPLETE);

Cos

Built-in function
2/3/2004

The cosine function.

Cos(x)

1. x is a number:
– returns the cosine of angle x (defined in radians).

Example

N/A

CovarianceMatrix

Batch language command
2/4/2004

CovarianceMatrix computes the approximate covariance matrix for the MLE of a
given likelihood function.

CovarianceMatrix (result matrix, likelihood function name);

Use COVARIANCE PRECISION to control how the Hessian is computed.

Returns (N is the number of independent variables in likelihood function name).:

1. If COVARIANCE PRECISION is 1 or 2:
– returns an NxN covariance matrix
2. If COVARIANCE PRECISION < 1:
– returns an Nx3 matrix, where each the first column contains left confidence interval bounds, the second column has
parameter MLEs and the third column includes right confidence interval bounds.

Example

20

CovarianceMatrix (covMx, lf);

CreateFilter

Batch language command
4/6/2005

Used to select portions of data sets for inclusion in analyses. ‘datasetid‘ is the
identifier of the data set to filter. ‘unit‘ is the size of the basic state for analyses
in terms of the charchter length.

DataSetFilter dataSetFilterid = CreateFilter (datasetid,unit,vertical partition, horizontal partition, alphabet

exclusions);

Upon successful completion of this command, 4 variables are automatically created and set:

1. dataSetFilterid species:
– number of species in the data set,
2. dataSetFilterid.sites:
– number of sites(columns) in the data set,
3. dataSetFilterid.unique sites:
– number of unique sites in the data set,
4. dataSetFilterid.site freqs:
– the vector of dimension dataSetFilterid.unique sites, which contains the count of sites of type i, in cell i.
4. dataSetFilterid.site map:
– the vector of (0-based) indices of sites from the underlying dataset which have been included in the data filter, in the
same order they are in the filter.

‘datasetid‘ must refer to an existing data set or a data set filter ‘unit‘ is a positive integer.

‘Unit‘ defines how many consecutive characters are to be treated as a single state and must be a positive integer. E.g, to
use codons in analysis of nucleotide data, specify, unit to be 3.

The last three arguments are optional.

Vertical partition designates the sites to be used in analysis. Leaving it blank: ”” includes all the sites.

Acceptable partition formats (all indexing is 0-based)

1). Explicit lists
– ”0,1,4,5,10”, includes sites 1,2,5,6,11 in analysis.
2). Intervals
– ”0-99”, includes sites 1 through 100 in analysis.
3). Paired intervals
– ”0-9&20-29” includes sites 1,21,2,22,..,10,30 in analysis.
4). Composite
– ”0-5,7,10-15&20-25”.
5). Boolean expression in terms of siteIndex.
– Includes all sites whose index renders the expression true.
6). Combs
– for example ”<011>” will select every 2nd and 3rd element of each triplet, ”<10101>” - every 1st, 3rd and 5th element
of each quintuplet.

21

7). Regular Expressions

– only sites which match a regular expression will be selected; for instance ”/(̂[A-Z])\1+$/” will select all constant sites.

The foregoing is also true for horizontal partition, with the exception of item 5, where siteIndex, should be replaced with
speciesIndex, and in 7, where regular expression matching is done on sequences. When both vertical and horizontal
partitions are specified via regular expressions, the behavior is not well defined.

‘Alphabet exclusions‘ is a comma separated list of state not to be allowed in analysis. Any site which contains excluded
characters will be skipped (reported to messages.log)

Example

DataSetFilter dsf = CreateFilter (ds,3,"","","TAA,TGA,TAG");
DataSetFilter dsf = CreateFilter (ds,1,"0-100");
DataSetFilter dsf = CreateFilter (ds,1,(siteIndex%3)==0);
DataSetFilter dsf = CreateFilter (ds,1,"/[CG]/"); /* only those sites which have C and G */

DATAFILE TREE

Constant
8/20/2002

Tree string from the most recently read data file.

DATAFILE TREE = Newick tree string;

Check IS TREE PRESENT IN DATA to verify that there were any trees defined in the data file.

Example

N/A

DATA FILE DEFAULT WIDTH

Constant
5/11/2000

Controls how dataset filters are printed by fprintf. Specifies the number of sites
per line. Default is 50.

DATA FILE DEFAULT WIDTH=value;

N/A

Example

N/A

22

DATA FILE PARTITION MATRIX

Constant
2/4/2004

A matrix of partition names and specifications from the most recently read NEXUS
data file.

DATA FILE PARTITION MATRIX = 2xN string matrix;

DATA FILE PARTITION MATRIX is an 2xN matrix of strings, where N is the number of partitions read from the file
(check that the matrix has at least two rows - if not, then no partitions were read). The first row contains the identifier
of the partition and the second row contains the partition string, in the same format as the one used by CreateFilter.

Example

N/A

DATA FILE PRINT FORMAT

Constant
2/4/2004

Controls how dataset filters are printed by fprintf. Default is 0.

DATA FILE PRINT FORMAT=value

1. value = 0:
– FASTA sequential;
2. value = 1:
– FASTA interleaved;
3. value = 2:
– PHYLIP sequential;
4. value = 3:
– PHYLIP interleaved.
5. value = 4:
– NEXUS sequential with sequence labels in the matrix;
6. value = 5:
– NEXUS interleaved with sequence labels in the matrix;
7. value = 6:
– NEXUS sequential without sequence labels in the matrix;
8. value = 7:
– NEXUS interleaved without sequence labels in the matrix;
9. value = 8;
– comma separated character data

Use ConvertDataFile Standard Analysis to change the format of a data file.

Example

N/A

23

DEFAULT FILE SAVE NAME

Constant
9/16/2005

Sets the default (save) file name when HyPhy prompts the user for a destination
file.

DEFAULT FILE SAVE NAME = string;

N/A

Example

N/A

DIRECTORY SEPARATOR

Constant
2/5/2004

Directory mark in full paths, appropriate for the platform.

N/A

:, / or depending on the platform.

Example

N/A

Differentiate

Batch language command
2/4/2004

Find analytical derivative of an expression.

Differentiate (receptacle, expression, variable, <times>);

1. ‘receptacle‘:
– the name of the variable to receive the derivative;
2. ‘expression‘:
– the expression to differentiate
3. ‘variable‘:
– is the identifier of the variable with respect to which the derivative should be taken
4. ‘times‘:
– an optional parameter of what order derivative should be taken. Default = 1

Supports scalar expressions with +,-,*,/,̂, Sin, Cos, Arctan, Log, Exp, Erf, Tan in them; correctly treats variable
dependancies. Upon execution ‘receptacle‘ will become a dependent variable, set equal to the derivative expression.

HyPhy performs only trivial simplifications,
so the results of Differentiate may be grossly undersimplified.

24

Example

Differentiate (dfx, Exp(x2̂),x);
GetString (derivativeStr, dfx, 0);
fprintf (stdout, " ", derivativeStr, " ");

DoSQL

Built-in function
2/5/2004

Open, access and close SQL data bases. Implemented via SQLite (www.sqlite.org).

DoSQL (arg1, arg2, arg3);

DoSQL supports 3 modes of calls:

1. Data Base Open:
– DoSQL (SQL OPEN, file name, DB ID): the file in ‘file name‘ is opened (created if needed), and a new database
handle is stored in ‘DB ID‘.
2. Process an SQL command
– DoSQL (DB ID, SQL Command, Callback):
A. ‘DB ID‘ is a data base handle returned by a data base open command.
B. ‘SQL Command‘ is a string with SQL commands to execute.
C. ‘callback‘ (optional) is the ID of a user callback function (with a dummy parameter). The callback will be executed
once for every record/row matched and can expect to have two variables set:
** SQL ROW DATA: the data in the columns selected by the query,
** SQL COLUMN NAMES: the name of those columns.
3. Data Base Close:
– DoSQL (SQL CLOSE, ””, DB ID): the DB referenced by DB ID handle is closed. The second argument is ignored.

Example

N/A

END OF FILE

Constant
2/4/2004

Set to 0 or 1 by FSCANF to indicate whether the last read reached the end of file.

END OF FILE

Most useful in a loop, when data is read from the same file to check when to terminate.

Example

fileName = "list";

while (!END OF FILE)
{
fscanf (fileName,"String", str);
fprintf (stdout," ",str);
}
/* Simply reads the file line by line and echoes it to the console. */

25

Eigensystem

Built-in function
3/30/2004

Finds eigenvalues and eigenvectors of a square symmetric matrix

Eigensystem(mx)

‘mx‘ must be a square symmetric matrix.

The return value is an associative list:
1). the first entry (index 0) is the vector of eigenvalues, sorted in decreasing order;
2). the second entry (index 1) is the matrix of eigenvectors (in columns), corresponding to their respective eigenvalues.

Example

/* finding the logarithm of a matrix
mx = Transpose(V) * Diag * V
Log (mx) = Transpose (V) * Log (Diag) * V

*/

mx = {{0.97,0.01,0.02}{0.01,0.90,0.09}{0.02,0.09,0.89}};
eigen = Eigensystem (mx);
evalues = eigen[0];
evectors = eigen[1];
logdiag = {Rows(mx), Rows(mx)};
for (k=Rows(mx)-1; k>=0; k=k-1)
{
logdiag [k][k] = Log(evalues[k]);
}
matrixlog = evectors*logdiag*Transpose(evectors);

fprintf (stdout, " Matrix: ", mx, "Log(Matrix): ", matrixlog, "Exp(Log(Matrix)): ", Exp (matrixlog)," ");

Erf

Built-in function
2/3/2004

The error function.

Erf(x)

1. x is a non-negative number:
– returns Erf(x)=2/Sqrt(Pi) Integral{0,x,Exp[-t2̂]dt}.

Example

N/A

ExecuteCommands

Batch language command
2/4/2004

Interpret and execute a sequence of HyPhy batch language commands.

ExecuteCommands (commands);

26

1. ‘commands‘:
–a string (either a literal or a string variable id), containing commands to execute.

Example

ExecuteCommands("fprintf (stdout, Ḧello world)̈;");

Exp

Built-in function
2/3/2004

The exponential function.

Exp(x)

1. x is a number:
– returns ex̂.
2. x is a square matrix:
– returns Exp[x], implemented as a scaled Taylor series approximation.

Example

N/A

FORMAT

Data File formatting instruction
2/4/2004

FORMAT is used to indicate what data format a file is in.

$FORMAT:"value" (new line char)

This instruction has been deprecated, since HyPhy will autodetect file formats

Allowed values:
1. PHYLIPS - PHYLIP sequential;
2. PHYLIPI - PHYLIP interleaved.

Example

$FORMAT:"PHYLIPS"

FindRoot

Batch language command
2/4/2004

Find a root of an equation in the interval [left bound, right bound].

27

FindRoot (receptacle, expression, variable, left bound, right bound);

1. ‘receptacle‘:
– the name of the variable to receive the root. Upon execution ‘receptacle‘ is set to the root, or if no root could be found
- to the value of left bound.
2. ‘expression‘:
– the expression to define the equation with. The equation solved is ‘expression‘ = 0. It must be a differentiable scalar.
3. ‘variable‘:
– the identifier of the variable with respect to which the equation should be solved.

4. ‘left bound‘, r‘ight bound‘:
– define the interval where a root is located. ‘right bound‘ must be greater than ‘left bound‘.

If no (or multiple) roots exist in the interval, ‘receptacle‘ will be set to ‘left bound‘.

Example

FindRoot (root, x3̂-2 ,x, 0, 2);
fprintf (stdout, " The real cube root of 2 is:", root, " ");

Format

Built-in function
9/14/2005

Format is used to print a floating point number with a specified number of places of
precision. If given a string argument, will parse and evaluate the formula contained
in the string and format the result. Also controls output of tree strings.

Format (x,width,places);

The function returns a string containing the appropriate representation of the number.

1. ‘width‘:
– is the total length of the number string and should be a non-negative integer. Set ‘width‘ to 0 not to fix the total length
2 ‘places‘:
– is the number of decimal places to be printed and should be a non-negative integer. Set ‘places‘ to 0 to display the
default number of decimal places.

Format (x,width,places) is equivalent to C sprintf (”%width.placesf”,x).
Format (x,0,0) is equivalent to C sprintf (”%g”,x).

If ‘x‘ is a tree or topology, then width and places are boolean (0,1) flags with ‘width‘ controlling whether or not to print
default internal node names in the tree string and ‘places‘ determining whether or not to include branch lengths in the
output string.

If ‘x‘ is a string, ‘x‘ is parsed as a formula, computed, and if the value is a scalar, that result is formatted.

Example

28

x = Arctan(1)*4;
testString = Format ("Arctan(1)*4", 10,10);

fprintf (stdout, " ", Format (x,5,2),
" ", Format (x,0,20),
" ", Format (x,20,0),
" ", Format (x,0,0),
" ", testString, " ");

GLOBAL STARTING POINT

Constant
8/20/2002

Specifies the default initial value for all independent variables during optimization.
Default is 0.1.

GLOBAL STARTING POINT=value;

If distance estimates are being used, then the value of GLOBAL STARTING POINT is ignored. If
GLOBAL STARTING POINT is out of bounds for a variable, the closer bound is used as initial value.

Example

N/A

Gamma

Built-in function
2/3/2004

The gamma function.

Gamma(a)

1. a is not a negative integer:

– returns Gamma[a] = Integral{0,Infinity, Exp[-x] x(̂a-1)dx}.

Example

N/A

GammaDist

Built-in function
2/3/2004

The gamma distrufunction.

GammaDist(x,a,b)

1. x is a number, b is a positive number, a is not a negative integer:

– returns GammaDist[x,a,b] = bâ/Gamma(a) Exp[-bx] x(̂a-1).

29

Example

N/A

GetDataInfo

Batch language command
7/23/2004

Extract various types of sequence information

GetDataInfo(matrix, dataFilterID,<sequence, site | sequence1 , sequence2,AMBIGS>)

1. ‘matrix‘:
– upon return contains requested information;
2. ‘dataFilterID‘:
– the data filter ID to extract the information from;
3. One of the 3 options:
I. Blank: returns site duplicate map - i.e. which unique pattern does each site correspond to.
II. Sequence, Site pair: returns a character translation of the state in that position, i.e. a vector with N states (N =
number of distinct characters in the data, 4 for nucleotides etc). A ‘1‘ in the matrix means that the (sequence,site)
character can be mapped to the corresponding basic character. Multiple 1 entries imply an ambiguities.
III. Sequence 1, Sequence 2, AMBIGS: returns an NxN matrix of pariwise differences between sequences (diagonal entries
are actually matches). AMBIGS controls how ambiguities are handled (RESOLVE AMBIGUITIES,
AVERAGE AMBIGUITIES, weighting by column frequencies. SKIP AMBIGUITIES - ignore pairwise comparisons with
ambiguities. Any other value - all resolutions are averaged and treated as equiprobable).

Example

N/A

GetInformation

Batch language command
10/1/2004

GetInformation is a utility command returns a matrix whose contents vary upon
the parameter value.

GetInformation (receptacle, object);

1. ‘receptacle‘:
– the matrix variable to receive the data

2. ‘object‘:
– the object whose information is to be retrieved. Below is the list of object types and return values:
a. the name of a numeric variable:
** value of the variable, lower and upper bounds on the range as a 1x3 matrix;
b. the name of a category numeric variable:
** a two column matrix with a row per rate class, with column one containing the rates and column 2 containing the
probabilities for the rates;
c. the name of a tree node:
** the rate matrix at that node (numeric). If the node has no associated rate matrix, the return value will be a 1x1
matrix whose value is not meaningful;
d. the name of a likelihood function:
** a string column vector containing the names of category variables the function depends on. The order is the same as

30

that used for building marginal likelihood matrices;
e. the name of a data set filter:
** a string column, where each string is a sequence, ordered the same way they are in the filter.
f. a ”” enclosed string literal:
** finds all defined variable names which match the regular expression defined in the string.

If GetInformation was passed an invalid object a 0x0 matrix is returned.

Example

N/A

GetString

Batch language command
10/7/2004

GetString is a utility command which returns a string, whose meaning varies, given
an object.

GetString (receptacle, object, index);

1. ‘receptacle‘:
– is the string variable to receive the data;
2. ‘object‘:
– is the object whose strings are to be retrieved;
3. ‘index‘:
– is the index of the string to be retrieved.

Following is the list of acceptable objects and corresponding return values (use Rows command to get the total count of
objects in C-G).

A. A data set or a data set filter:
– the function returns the name of the taxon at i-th position;
B. A dependent variable:
– GetString returns the formula of the dependance;
C. ‘LikelihoodFunction‘ literal:
– identifier of ‘index‘ likelihood function;
D. ‘DataSet‘ literal:
– identifier of ‘index‘ data set;
E. ‘DataSetFilter‘ literal:
– identifier of ‘index‘ data set filter;
F. ‘Tree‘ literal:
– identifier of ‘index‘ tree;
G. ‘LAST MODEL PARAMETER LIST‘ literal:
– identifier of ‘index‘ parameter of the last defined model;
H. ‘HYPHY VERSION‘ literal:
– a version string for HyPhy. ‘index‘ can be 0 (version number), 1 (full version), 2 (version/platform);
I. ‘TIME STAMP‘ literal:
– a time string. ‘index‘ can be 1 (local time in astandard format) or 0 (yyyy/mm/dd hh:mm GMT time string);
J. A likelihood function identifier:
– GetString returns the name of ‘index‘
independent parameter.
K. ‘UserFunction‘ literal:
– returns an associative array with ”ID” key for the function identifier and ”Arguments” key pointing to a string column
matrix with ordered function arguments

31

Example

N/A

GetURL

Batch language command
2/3/2004

Retrieve a url to a string or to a file

GetURL (receptacle,URL<,SAVE TO FILE>);

1. The optional 3rd argument SAVE TO FILE is speciefied:
– the URL provided in the string argument URL is retrieved and saved to the file, whose name is given in the string
argument receptacle.
2. 3rd argument is omitted:
– the URL provided in the string argument URL is retrieved and stored in the variable ‘receptacle‘.

Example

GetURL (thePage,"http://www.hyphy.org");
/* thePage now contains the HTML code of www.hyphy.org */

GetURL ("test.html","http://www.hyphy.org",SAVE TO FILE);
/* the HTML of http://www.hyphy.org is saved to file "test.html" */

HYPHY BASE DIRECTORY

Constant
2/5/2004

Absolute path to the HyPhy home directory.

N/A

Has a trailing directory symbol - DIRECTORY SEPARATOR.

Example

N/A

HarvestFrequencies

Batch language command
2/4/2004

This function allows one to collect the frequencies of characters (states) in a data
set (or filter).

HarvestFrequencies (receptacle,dataid,atom,unit,position dependent flag);

1. ‘receptacle‘:
– is the matrix identifier where to the resulting frequencies table is stored.

32

2. ‘dataid‘:
– is either a data set or a data set filter.
3. ‘atom‘:
– determines the size of the data atom to count in terms of character length.
4. ‘unit‘:
– is the size (in terms of character length) of the block within each atom to be counted. The ultimate output will count
frequencies of units.
5. ‘position dependent flag‘:
– determines whether units are to be counted accounting for (or not accounting) for their position within the ‘atom‘.

The resulting matrix will have dimension ‘unit states‘ x 1 (position dependent flag is false) or‘unit states‘ x (atom/unit)
(position dependent flag is true), where ‘unit states‘ is the number of distinct possible units, ordered in terms of the
ordering of characters in the data. (e.g. for nucleotides and atom = 3, codon ‘cat‘ will be in row 20.)

dataid must refer to an existing data set.
‘atom‘ and ‘unit‘ must be positive integers, and ‘atom‘ must be divisible by ‘unit‘. ‘position dependent flag‘ is either 0
(false) or 1 (true).

Example

HarvestFrequencies (freq, ds, 1,1,0);
HarvestFrequencies (freq, ds, 3,1,1);

IBeta

Built-in function
2/4/2004

The incomplete beta function.

IBeta(x,p,q)

1. ‘p‘ and ‘q‘ are non-negative numbers and x should is in [0,1]:

– returns IBeta[x,p,q] = Integral{0,x, Gamma[p+q]/Gamma[p]Gamma[q] t(̂p-1) (1-t)(̂q-1)};

Example

N/A

IGamma

Built-in function
2/3/2004

The incomplete gamma function.

IGamma(a,x)

1. a is not a negative integer, x is a positive number:

– returns IGamma[a,x] = Integral{0,x, Exp[-t] t(̂a-1)dt}.

33

Example

N/A

INCLUDE MODEL SPECS

Constant
2/5/2004

Tree printing control. ‘0‘ by default.

N/A

If set to ‘1‘, trees and topologies produced by fprintf will include internal branch model specification constructs.

Example

m = {{*,a,b,a}{a,*,a,b}{b,a,*,a}{a,b,a,*}};
efv={{1}{1}{1}{1}}*0.25;
Model mm = (m,efv,1);
efv2={{0.4}{0.1}{0.2}{0.3}};
Model mm2 = (m,efv,1);

Tree t = ((1{mm},2{mm}),3,4);
fprintf (stdout, " Without models:",t," ");
INCLUDE MODEL SPECS=1;
fprintf (stdout, " With models:",t," ");
INCLUDE MODEL SPECS=0;

INTEGRATION PRECISION FACTOR

Constant
2/4/2004

Designates integration precision used internally for computing cumulative distribu-
tions of densities w/o known cumulative distributions formulas. Default is 0.0001.

INTEGRATION PRECISION FACTOR=value;

The actual method implemented for integration is C++ streamlined version of Romberg adaptive integration routines.

Example

N/A

INTERMEDIATE PRECISION

Constant
2/4/2004

Designates intermediate precision for optimization methods that combine gradient
ascent and bracketing. Not enabled in version after 0.99 - the optimizer automat-
ically chooses such a switching point.

INTERMEDIATE PRECISION=value;

34

INTERMEDIATE PRECISION is interpreted as relative precision in the likelihood function values, and when it is
reached, optimization routines switch from gradient ascent to bracketing. Default is precision/10 or precision when the
max dimension of the model matrix is greater than 21.

Example

N/A

IS TREE PRESENT IN DATA

Constant
8/20/2002

Was there a tree defined in the last data file read?

IS TREE PRESENT IN DATA = 0 or 1;

If there was a tree in the data file, DATAFILE TREE will be set to the tree string. For NEXUS files, which may define
multiple trees, also check NEXUS FILE TREE MATRIX.

Example

N/A

Integrate

Batch language command
2/5/2004

Numerically integrate an expression over the interval [left bound, right bound].

Integrate (receptacle, expression, variable, left bound, right bound);

1. ‘receptacle‘:
– the name of the variable to receive the integral.
2. ‘expression‘:
– the expression to integrate
3. ‘variable‘:
– the identifier of the variable with respect to which the expression should be integrated.

4. ‘left bound‘, r‘ight bound‘:
– define the interval over which the integral is evaluated. ‘right bound‘ must be greater than ‘left bound‘.

Example

Integrate (e,Exp(-x2̂/2) ,x, 0, 2);

fprintf (stdout, " The integral of Exp[-x2̂/2] over [0,1] is:", e, " ");

35

InvChi2

Built-in function
2/3/2004

The inverse Chi squared distribution.

InvChi2 (x,n)

1. x is a number in [0,1] and n is a non-negative number:
– returns y, such that P(t<=y)=x where t is a random variable distributed as Chi-squared with n degrees of freedom.

Example

N/A

Inverse

Built-in function
2/3/2004

The inverse function.

Inverse(x)

1. x is a square non-singular matrix:
– computes the matrix inverse of x
2. x is a string:
– flips the ordering of letters in string ‘x‘.

Example

Inverse({{2,1}{1,2}});
/* returns
{
{ 0.666666666667, -0.333333333333}
{ -0.333333333333, 0.666666666667}}
*/
Inverse("HyPhy")
/* returns yhPyH */

KEEP OPTIMAL ORDER

Constant
2/4/2004

When column optimization is active, this boolean constant allows to keep the
optimal order between successive optimizations. Default is false.

KEEP OPTIMAL ORDER=0 or 1;

Meaningful when neither the data nor the tree are changed, for example when multiple models are fitted in succession to
the same alignment/tree. Standard analyses set this option automatically when appropriate.

Example

N/A

36

LAST FILE PATH

Constant
2/4/2004

Set to the last file path returned by a PROMPT FOR FILE request.

N/A

This string variable can be used to retrieve the full path of the last file the user selected when prompted. The value is set
after each successful use of to PROMPT FOR FILE. Should be saved in another string variable when working with
multiple files.

Example

N/A

LFCompute

Batch language command
3/1/2004

Compute the likelihood function using current parameter values.

LFCompute (likelihood function id, receptacle);

1. ‘receptacle‘:
– LF START COMPUTE - must be called before any computations are done to set up the internals,
– is the identifier of the variable which receives the result,
– LF DONE COMPUTE - must be called after all the computations are done to clean up the internals.
2. ‘likelihood funtion id‘
– the likelihood function to be evaluated.

Example

LFCompute (lf,LF START COMPUTE);
LFCompute (lf,res);
LFCompute (lf,LF DONE COMPUTE);

LF CALL COUNT

Constant
8/20/2002

Contains the number of likelihood function evaluations up to this point.

N/A

N/A

Example

N/A

37

LIKELIHOOD FUNCTION OUTPUT

Constant
2/4/2004

Controls how likelihood function is printed by fprintf. Default value is 2.

LIKELIHOOD FUNCTION OUTPUT=value;

1. value = 0:
– print just the likelihood function value;
2. value = 1:
– print the likelihood function value followed by a list of parameter values;
3. value = 2:
– 2(default) - print the likelihood function value followed by tree strings with only branch lengths measure in expected
substitutions per position.
4. value = 3:
– print the list of parameters and constraints;
5 value = 4:
– print a list of parameters, with values and constraints as a HyPhy batch language statement. May be useful for saving
and restoring parameter estimates;
6. value = 5:
– same as 4, except that all tree declarations are also included;
7. value = 6:
– same as (4) with randomized order of variables during bracketing.

Example

/* output samples */

/*0*/
-2667.76057913882

/*1*/
Likelihood Function‘s Current Value = -2667.76057913882
R=0.106575
clockTree.Chimpanzee.a=0.163059
clockTree.Node3.a=0.0544599
clockTree.Gibbon.a=0.420283
clockTree.Node6.a=0.186018
clockTree.Gorilla.a=clockTree.Chimpanzee.a+clockTree.Node3.a=0.217519
clockTree.Human.a=clockTree.Chimpanzee.a=0.163059
clockTree.Orangutan.a=clockTree.Gibbon.a=0.420283

/*2*/
Log Likelihood = -2667.76057913882;
Shared Parameters:
R=0.106575

Tree clockTree=(Gorilla:0.0618842,(Chimpanzee:0.0463904,Human:0.0463904)Node3:0.0154938,(Gibbon:0.119571,Orangutan:0.119571)Node6:0.052922);

/*3*/
Log Likelihood = -2667.76;
Independent Parameters List
Parameter 1 : R
Parameter 2 : clockTree.Chimpanzee.a
Parameter 3 : clockTree.Node3.a
Parameter 4 : clockTree.Gibbon.a
Parameter 5 : clockTree.Node6.a

Constrained Parameters List
Parameter 1 : clockTree.Gorilla.a=clockTree.Chimpanzee.a+clockTree.Node3.a
Parameter 2 : clockTree.Human.a=clockTree.Chimpanzee.a
Parameter 3 : clockTree.Orangutan.a=clockTree.Gibbon.a

/*4*/

global R=0.1065751962763258;
clockTree.Chimpanzee.a=0.1630593312591758;
clockTree.Node3.a=0.05445992293520954;
clockTree.Gibbon.a=0.4202829790973586;
clockTree.Node6.a=0.1860175069882983;
clockTree.Gorilla.a:=clockTree.Chimpanzee.a+clockTree.Node3.a;
clockTree.Human.a:=clockTree.Chimpanzee.a;
clockTree.Orangutan.a:=clockTree.Gibbon.a;

/*5 same as 4 plus */
Tree clockTree=(Gorilla:0.0618842,(Chimpanzee:0.0463904,Human:0.0463904)Node3:0.0154938,(Gibbon:0.119571,Orangutan:0.119571)Node6:0.052922);

LIST ALL VARIABLES

Constant
8/17/1999

Passed as an argument to fprintf produces a list of all currently defined variables.

38

fprintf(destination, LIST ALL VARIABLES);

N/A

Example

N/A

LUDecompose

Built-in function
2/3/2004

The LU matrix decomposition function.

LUDecompose(m)

1. m is a square matrix.
– Any non-degenerate square matrix can be ‘uniqely‘decomposed into the product of a lower triangular with an upper
triangular matrices, where in addition the lower triangular matrix has ones on the diagonal.
The return value of this function is a Nx(N+1) matrix containing the LU decomposition and the last column keeps track
of row interchanges used for pivoting during the decomposition. Used in conjunction with LUSolve.

Example

LUDecompose({{2,1}{1,2}});
/* returns
{{ 2, 1, 0}
{ 0.5, 1.5, 1}}.
In particular this means that */

{{1,0}{0.5,1}}*{{2,1}{0,1.5}}
/* yields the original matrix */

LUSolve

Built-in function
2/3/2004

Solves systems of the form LUx = b.

LUSolve(m,b)

1. m is is the return value of a call to LUDecompose and b is a vector
– Returns a column-vector containing the solution.

Example

/* To solve Ax = b, where A is {{2,1}{1,2}} and b = {{0}{1}} : */

A = {{2,1}{1,2}};
b = {{0}{1}};
m = LUDecompose(A);
x = LUSolve(m,b);

/* the solution is
{{ -0.333333333333}
{ 0.666666666667}}
*/

39

LikelihoodFunction

Batch language command
2/4/2004

The likelihood function construction operation.

LikelihoodFunction id = (tree1,datafilterid,...,treen,datafilteridn,<optional evaluation template>);

Receives pairs (one or more) of existing data set filter and tree as arguments.

‘id‘ must be a valid identifier.

The number of tips in the tree must be equal to the number of species in the data set filter, and, under some options, the
names of tree leaves and sequence names must match.

‘optional evaluation template‘ allows the user to alter how the likelihood is assembled from pieces (by default, the log
likelihoods coming from each partition are added). Please note that some of the features and operations of the likelihood
function may not yet be implemented for ‘computational template‘ functions.

The evaluation template must be one of the three options:

I. A formula in terms of either SITE LIKELIHOOD or BLOCK LIKELIHOOD (and, possibly, user parameters).
Depending on which variable the formula is defined in terms of, one of the two options is applicable.

1. Block-wise option:
– BLOCK LIKELIHOOD is a matrix populated with the log likelihoods of each partition after each evaluation.
2. Site-wise option:
– SITE LIKELIHOOD option is only applicable if every partition has the same number of sites. In this case, for every
site, SITE LIKELIHOOD matrix is populated with site likelihoods (not LOG-likelihoods) and formula is evaluated - it is
assumed that the formula returns a LOG-likelihood. Lastly, the total likelihood is obtained by summing the results at
every site.

II. An identifier of a hidden Markov category variable.

Only applicable if every partition has the same number of sites AND the number of states in the hidden Markov chain
are the same as the number of partitions.

The likelihood is then computed by averaging over all possible realizations of the HMC, where the likelihood of every site
in state ‘i‘ of the HMC comes from the i-th partition.

III. A call to a single parameter user defined function, which is passed the matrix of conditional likelihoods at every site,
and is expected to return a LOG-likelihood.

Example

LikelihoodFunction lf= (tr,df);
LikelihoodFunction lf2= (tr,df,tr2,df2);

40

Log

Built-in function
2/3/2004

The natural (base ‘e) logarithm function.

Log(x)

1. x is a positive number.
– returns the natural log of x.
2. x is a matrix of positive numbers.
– returns a matrix of the same dimension where each entry is the natural log of the corresponding entry in x (note that
this is NOT the matrix log function).

Example

N/A

MAXIMUM ITERATIONS PER VARIABLE

Constant
2/4/2004

If the optimzation precision could not be reached in MAXI-
MUM ITERATIONS PER VARIABLE*number of independent variables likelihood
function evaluations, the routines return with the best value so far. The default
value is determined using the formula 500+1000/(number of independent
parameters).

MAXIMUM ITERATIONS PER VARIABLE=value;

Don‘t change this value unless HyPhy optimization routines repeatedly terminate before optimization precision is met (as
reflected in messages.log).

Example

N/A

MESSAGE LOG

Constant
8/20/2002

The handle to HyPhy messages file which can be passed to fprintf.

N/A

N/A

Example

fprintf (MESSAGE LOG,"Some message ");

41

MESSAGE LOGGING

Constant
2/4/2004

Toggles writing messages to file ‘messages.log‘ on and off.

LMESSAGE LOGGING=0 or 1;

N/A

Example

N/A

MPIReceive

Batch language command
2/5/2004

Receive data from an MPI node.

MPIReceive (allowed, sender, data)

1. ‘allowed‘:
– only accept messages from this node (set to -1 to accept all messages).
2. ‘sender‘:
– set to the index of the sender
3. ‘data‘:
– the resulting data (always a string) is stored in this ID.

This call will block until message is receieved.

Example

N/A

MPISend

Batch language command
2/5/2004

Send an MPI instruction to a node.

MPISend (node, message);

1. ‘node‘:
– index of an MPI node to send the message to. The call may block if the target node doesn‘t receive. ‘0‘ is the master
node (running the batch file). ‘node‘ must be between 0 and MPI NODE COUNT-1.
2. ‘message‘:
– a string of batch commands to execute withnode ‘node‘ (to return results, use MPISend to calling node in that code)
OR
– the ID of an existing likelihood function. This function will be serialized and sent to node ‘node‘ for optimization. That
node will return a string (serialized form) of the function along with parameter MLEs when it is done. Call
‘ExecuteCommands‘ on the return string to gain access to the function and it‘s parameter values.

42

Example

N/A

MPI LAST SENT MSG

Constant
2/5/2004

Contents of last MPI message sent.

N/A

N/A

Example

N/A

MPI NODE COUNT

Constant
2/5/2004

Number of available MPI nodes (including self).

N/A

Only meaningful for MPI builds of HyPhy.
Set to 0 for other builds.

Example

N/A

MPI NODE ID

Constant
2/5/2004

ID of current node

N/A

Ranges from 0 to MPI NODE COUNT-1.
0 is the ‘master‘ node, i.e. the node executing the batch file.

Only meaningful for MPI builds of HyPhy.

43

Example

N/A

Max

Built-in function
2/4/2004

Returns the maximum of its arguments.

Max(a,b)

a and b must be numbers.

Example

N/A

Min

Built-in function
2/4/2004

Returns the minimum of its arguments.

Min(a,b)

a and b must be numbers.

Example

N/A

Model

Batch language command
2/4/2004

‘Model‘ is used to define an evolution model by specifying substitution rate matrix
and equilibrium frequencies.

Model model name = (rate matrix ident,freq vector ident,<mult flag>);

1. ‘rate matrix‘:
– must be a square matrix. Diagonal elements are ignored if defined, and reset to ensure that the it is a proper rate
matrix.
2. ‘freq vector ident‘:
– Equilibrium frequencies matrix must be a column vector of the same dimension as the rate matrix. The frequency
vector must be supplied, even when it is included in the structure of the rate matrix (as in F84).
3. ‘mult flag‘:

44

– Optional boolean mult flag is used to indicate whether rate matrix elements should be automatically multiplied by the
appropriate equilibrium frequency. Default is 1(true), and if the value of the flag is 0 (false), then the equilibrium
frequencies should be integrated into the rate matrix explicitly.

Example

See files in the ‘Examples‘ directory.

MolecularClock

Batch language command
2/4/2004

Molecular clock is called to set additive length constraints on a tree from a node
down.

MolecularClock (treeid,var1,var2,...,varn);

‘treeid‘ is either a valid tree identifier (in which case the command will set Molecular Clock on the entire tree), or a node
identifier (will set Molecular Clock from that node down).

Following ‘treeid‘ is the list of variables to impose the constraint on.

Each node in the part of the tree which MolecularClock is being set on, must depend on the variables in the
MolecularClock list.

HyPhy will write a list of generated constraints to messages.log

Example

m = {{*,a,b,a}{a,*,a,b}{b,a,*,a}{a,b,a,*}};
efv={{1}{1}{1}{1}}*0.25;
Model mm = (m,efv,1);
Tree tr = ((1,2)12,(3,4)34);
MolecularClock (tr,a);
MolecularClock (tr.12,b);

NEXUS FILE TREE MATRIX

Constant
8/20/2002

A matrix of tree strings and identifiers from the most recently read NEXUS data
file.

NEXUS FILE TREE MATRIX = Nx2 string matrix;

NEXUS FILE TREE MATRIX is an Nx2 matrix of strings, where N is the number of trees read from the file (check
IS TREE PRESENT IN DATA to see if any trees were read at all). The first column contains the identifier of the tree,
and the second column contains the actual tree string.

45

Example

N/A

NICETY LEVEL

Constant
2/4/2004

Controls how cpu-time greedy and responsive the application is. Default is 1.
Maximum(meaningful) value is 6.

NICETY LEVEL=value;

Starting with version 0.99 and above, HyPhy automatically selects an appropriate value based on the complexity of an
optimization.

This constant has no effect on

Example

N/A

NO INTERNAL LABELS

Constant
2/5/2004

Tree printing control. ‘0‘ by default.

N/A

If set to ‘1‘, trees and topologies produced by fprintf will NOT include internal branch names.

Example

Tree t = (((1,2)MyInt,3),4,5);
fprintf (stdout, " With labels:",t," ");
NO INTERNAL LABELS=1;
fprintf (stdout, " Without labels:",t," ");
NO INTERNAL LABELS=0;

OPTIMIZATION METHOD

Constant
2/3/2004

Specifies the optimization method to utilize. Default method is 4 - it is strongly
recommended that you do not use non-default methods unless you have reasons
to believe that the default converge s to an local extemum.

OPTIMIZATION METHOD = value;

46

1. value = 0:
– sequential single variable bracketing;
2. value = 1:
– simplex method (unreliable and slow);
3. value = 2:
– simulated annealing (currently disabled);
4. value = 3:
– bracketing along conjugate directions obtained without numerical gradients (Powell‘s method);
5 value = 4:
– bracketing along conjugate directions obtained with numerical gradients (the conjugate gradient method) followed by
coordinate wise bracketing
6. value = 5:
– bracketing with randomized order of variables;
7. value = 6:
– same as (4) with randomized order of variables during bracketing.
8. value = 7:
– conjugate gradient (no coordinate wise bracketing).

Example

N/A

OPTIMIZATION PRECISION

Constant
1/19/2000

Sets the precision goal for optimization routines. Default is 0.001.

OPTIMIZATION PRECSION=value;

N/A

Example

N/A

OPTIMIZATION PRECSION METHOD

Constant
2/4/2004

Optimization precision target. 0 is the default value.

OPTIMIZATION PRECISION METHOD=value;

1. value is 0:
– (default) the optimization precision objective is applied to the likelihood function value;
2. value is 1:
– all the parameter estimates must meat precision goals.

Note that the second option may not be supported by all optimization methods and is not recommended.

47

Example

N/A

OPTIMIZE SUMMATION ORDER

Constant
2/4/2004

When true, pseudo optimal column ordering is used. Default is true.

OPTIMIZE SUMMATION ORDER=0 or 1;

HyPhy will reorder alignment columns in a way to speed up computations when appropriate. You may want to turn this
option off only if you create likelihood functions that are never optimized (for simulation, export etc). Make sure to set
the constant BEFORE ikelihood functions are created.

Example

N/A

OPTIMIZE SUMMATION ORDER PARTITION

Constant
2/4/2004

Used when pseudo optimal column ordering is active. Specifies the subpartition
size for column ordering.

OPTIMIZE SUMMATION ORDER PARTITION=value;

The bigger the value of OPTIMIZE SUMMATION ORDER PARTITION the better savings will be attained, however
the time needed for initial column ordering depends quadratically on OPTIMIZE SUMMATION ORDER PARTITION.
Default is 1500. This value is sufficient for all but very long (>10000 sites) alignments, and even then should probably
never be set about 3000.

Example

N/A

OpenDataPanel

Batch language command
2/4/2004

This function is used to save and restore states of data panel windows in HyPhy
GUI. It is not recommended for direct invokation by the user.

OpenDataPanel (dataSetID,species order,display settings,partition settings,<optional likefunc ID>);

1. dataSetID:
– identifier of an existing dataset

48

2. ‘species order‘:
– a string in the same format used by CreateFilter, used to select what species from dataSetID should be included in the
data panel. Leave empty to include all.
3. ‘display settings‘:
– a string, containing 7 comma separated numbers, which control additional features of data display. The first number is
a flag with the following meaning:
** Flag has bit 1 turned on (i.e. (flag & 0x01) == 1): show consensus sequence
** Flag has bit 3 turned on (i.e. (flag & 0x04) == 1): show translated sequence (the index of the sequence to translate is
parameter 3 of 7).
** Flag has bit 4 turned on (i.e. (flag & 0x08) == 1): show reference sequence (the index of the sequence to translate is
parameter 2 of 7).
** The fourth number is unused.
** The fifth number selects the format for sequence names.
0: no names dispayed,
1: first 10 characters displayed,
2: full names displayed.
** The sixth number selects the format for repeated characters in a site.
0: display actual character,
1: display dots for repeats of the character in sequence 1.
** The seventh number selects the size of a character group.
9: every 9 sites are grouped (suggested for codon data).
10: every 10 sites are grouped (suggested for nucleotide and aminoacid data).
4.‘partition settings‘:
– a string containing semicolon separated settings for each partition. Each partition specification is a string with 5
comma separated entries.
** First entry is the name of the model attached to the partition. ”-1” indicates that no model is attached.
** Second entry selects model options for the partition. Bits 16-19 select parameter options, 0 for local, 1 for global, 2 for
global with rate variation, 3 for model specified. Bits 20-23 choose equilibrium frequency options, 0 for partition, 1 for
dataset, 2 for equal, 3 for estimate, 4 for model specified. Bits 24-31 specify the number of rate classes, if applicable. Bits
0-15 are not used.
** Third entry contains partition data settings. The only meaningful value there is the genetic code: bits 16-23 are the
internal index of the genetic code table to use.
** Fourth entry is the RGB color for the partitions: bits 0-7 for blue, 8-15 for green and 16-23 for red.
** Fifth entry is the identifier of the tree to attach to the partition. ”No tree” specifies that no tree be attached.
5. The last optional parameter:
– the identifier of the likelihood function to build based on the info provided in other parameters. If the parameter is not
included, no LF is built.

Example

DATA PANEL SOURCE PATH="::data:three.seq";
DataSet three2 = ReadDataFile (DATA PANEL SOURCE PATH);
DataSetFilter beginning = CreateFilter (three2,3,"0-161,165-167","","AGA,AGG,TAA,TAG");
DataSetFilter end = CreateFilter (three2,1,"170-368","");
Tree three tree2=(a,b,og);
Tree three tree24=(a,b,og);
OpenDataPanel(three2,"","0,0,0,0,2,0,10", "MG94,65537,720896,14443523,three tree2;F81,1,0,212,three tree24", three2 LF);

OpenWindow

Batch language command
2/5/2004

This command opens windows of HyPhy GUI from batch language files.

OpenWindow (window type, parameters <dimensions>);

1. ‘window type‘:
– can be one of the following literals
** TREEWINDOW (a tree viewer)
** CHARTWINDOW (a chart window)
** DISTRIBUTIONWINDOW (a chart window with Bayesian posterior processing enhancements.

49

2. ‘parameters‘:
– a column vector of STRINGS which control the appearance and content of the window. The format is determined by
‘window type‘ as follows.
A. For TREEWINDOW ‘parameters‘ can contain:
[0] - the ID of an existing tree variable, which will be plotted. Must be provided.
[1] - the flag which determines view options. If flag & 8192 > 0, then the tree is scaled as the window is resized. Can be
left blank.
[2] - (deprecated) a comma separated string of window coordinates. Use the universal ‘dimensions‘ parameter instead.
[3] - the identifier of the variable to scale tree branches on. Can be left blank.
[4] - a comma separated list of full branch name lengths to be selected. Can be left blank.
B. For CHARTWINDOW ‘parameters‘ can contain:
[0] - title of the window. Must be provided.
[1] - column label matrix ID. It must be a ROW of strings with the same dimension as the count of columns. Optionally,
in can have an additional entry, which is a ‘;‘ separated list of row caption and row titles. Must be provided.
[2] - data matrix ID. The matrix is internally evaluated if it consists of formulae. Must have the same number of columns
as specified by the label matrix. Must be provided.
[3] - chart type. Must be one of the types supported by the chart window (examine the drop down menu in any chart
window for types). Can be left blank.
[4] - x-axis variable. Can be either ‘Index‘ or one of the column names. Can be left blank.
[5] - semicolon separated list of data series. Can be left blank.
[6] - x-axis caption. Can be left blank.
[7] - y-axis caption (value axis or ‘z‘ in 3D plots). Can be left blank.
[8] - aux-axis caption (bottom value axis in contrast plots or ‘y‘ in 3D plots). Can be left blank.
[9] - display legend? 0 - no caption; 1-8 yes and position
(top-left,top-mid,top-right,bot-left,bot-mid,bot-right,mid-left,mid-right). Can be left blank.
[10] - overplot graph formula, in terms of x (and y for 3D plots). Can be left blank.
[11] - semi-colon separated series to scale 3D plots x and y-axes on. Can be left blank.
[12] - 3D plot projection settings. Semi-colon separated real coordinated for viewpoint in spherical coordinates (R,
xyAngle, zAngle). Can be left blank.
[13] - Semi-colon separated list of fonts. Each font spec must be a colon separates list of font face, font size and numberic
font style (flag combo of 0-plain,1-bold, 2-italic). The fonts are for: ticks, axis captions, legend. Can be left blank.
[14] - Semi-colon separated list of series colors. Values are 32 bit RGB. Can be left blank.
[15] - Number of surface divisions in 3D overplots. Can be left blank.
C. For DISTRIBUTIONWINDOW ‘parameters‘ can contain all the same options as CHARTWINDOW plus:
[16] - Semicolon separated list of existing category variables, and derived quantities. Can be left blank.

3. ‘dimensions‘ (optional):
– semicolon separated position spec (in pixels): width, height, left, top.

Example

N/A

Optimize

Batch language command
2/5/2004

‘Optimize‘ performs the optimization of the likelihood function.

Optimize (receptacle, likelihood function id);

‘receptacle‘ is the identifier of the matrix which receives the results, and ‘likelihood funtion id‘ is the likelihood function
to be optimized.

Upon completion ‘receptacle‘ will contain 2 rows:
- the first row lists all the parameters (global, followed by independent, followed by dependent - for order, call frpintf on
the likelihood function, with LIKELIHOOD FUNCTION OUTPUT = 1)
- the second row only has 3 entries - the first element is the value of the likelihood function ([1][0]), the second element is
the number of independent parameters that were optimized ([1][1]), the third is the number of global(shared) parameters

50

that were optimized([1][2]).

‘likelihood funtion id‘ must refer to an existing likelihood function OR a user defined function which is to be optimized.
In the latter case, the list of independent parameters will be gleaned from function parameter lists.

Example

Optimize (res, lf);

function userFunction (x,y)
{
return Exp(-(x-2)2̂-(y-3)2̂);
}
a = Random(0,10);
b = Random(0,10);

Optimize (res, userFunction (a,b));

fprintf (stdout, " ", res, " ");

PRINT DIGITS

Constant
2/3/2004

Specifies the number of digits to print for floating point numbers. Default is 8,
meaningful values are between 1 and 15.

PRINT DIGITS=value;

A value less than 0 or greater that 15 results in ”%g” behaviour, i.e. the default number of digits. This constant is
deprecated - use the Format function instead.

Example

N/A

PSTreeString

Built-in function
2/5/2004

Returns a string containing a post script rendering of the tree. The length of the
branches can be scaled on any model parameter (if it is defined for all branches),
or left unscaled (all branches have equal length). The command also takes a page
size parameter.

res = PSTreeString(tree ident, parameter name, page size);

‘parameter name‘ must be either an empty string (branches have equal lengths) or a parameter name (e.g. ”mu”), if that
parameter is defined for every branch. The length of the branches can be scaled on any model parameter (if it is defined
for all branches), or left unscaled (all branches have equal length).Two special values are also allowed:

1. ”EXPECTED NUMBER OF SUBSTITUTIONS”:
– scales the tree on the expected number of substitution per site, assuming there is a model attached to every branch of
the tree;
2. ”STRING SUPPLIED LENGTHS”:
– scales the tree on the lengths provided in the Newick string itself (assuming there are some).

51

The page size parameter is a 1x2 matrix which defines the width (first entry) and the height (second entry) of the page in
points. 1 point = 1/72 of an inch. If page size = {{0,0}}, the size of the page is set to 8x11 inches (US Letter size).

The output of the command is PostScript code which should be saved to a file and later rendered by a PS viewer
program or sent to a PS printer.

Example

Tree primates = (Gorilla:0.0575801,(Chimpanzee:0.05376,Human:0.0413699)Node3:0.0174714,(Gibbon:0.13899,Orangutan:0.100161)Node6:0.0530553);
pString = PSTreeString(primates,"STRING SUPPLIED LENGTHS",{{200,200}});
fprintf (stdout,pString);

Permute

Batch language command
2/4/2004

Can be used to create permutations of blocks of columns of ‘unit‘ length of existing
data sets or data set filters.

DataSetFilter <filterid> = Permute (datasetid, unit, vertical partition);

‘datasetid‘ must refer to an existing data set or a data set filter.
‘unit‘ is a positive integer.
The third argument is optional and can be used to permute a subset of the ‘filterid‘

The specification of vertical partition is identical to that of ‘CreateFilter‘.

Example

N/A

RANDOM SEED

Constant
2/4/2004

RANDOM SEED is used to access the seed of pseudo-random number generating
functions.

RANDOM SEED

Do not use this constant to SET in versions starting with 0.99. Use SetParameter instead. It is OK to use
RANDOM SEED as a normal variable to GET the value of the random seed.

Example

N/A

52

RANDOM STARTING PERTURBATIONS

Constant
2/3/2004

Used in conjunction with GLOBAL STARTING POINT if small (10% in magni-
tude) random perturbations are desired. Default value is false (0).

RANDOM STARTING PERTURBATIONS = 0 or 1;

You may use this constant if optimization algorithms seem to converge to local extrema.

Example

N/A

RELATIVE PRECISION

Constant
2/4/2004

When RELATIVE PRECISION is true, the optimization routines use relative error
to determine when to return. Default is false.

RELATIVE PRECISION=0 or 1;

Doesn‘t apply to all optimization settings and is not recommended.

Example

N/A

REPEAT

Data File formatting instruction
2/4/2004

REPEAT denotes the repeat character in interleaved data files.

$REPEAT:"repeat char" (new line char)

A repeat character is used when the 2nd or later species has the same data at a site, as the first species. Note that ‘.‘is
the repeat character by default.

Does not apply to NEXUS files (use MATCHCHAR instead)

Example

$REPEAT:"-"
$REPEAT:"" (do not use . as repeat)

53

REPLACE TREE STRUCTURE

Constant
2/5/2004

What to do when redefining trees. 0 by default.

N/A

1. ‘0‘:
– variables and values from the previous tree are kept;
2. ‘1‘:
– variables and values from the previous tree are replaced.

Example

N/A

Random

Built-in function
6/3/2004

Pseudorandom number generation function. Matrix permutation vector.

Random(a,b);

1. a and b are numbers, with b>a:
– Returns a (pseudo) random number from a uniform distribution over [a,b]. The numbers are produced via by a
‘Mersenne twister‘ as implemented in http://www.math.keio.ac.jp/matumoto/emt.html. The period of this
pseudo-random generator is 21̂9937-1.
2. a is a matrix. b is a number:
– returns a matrix resampled from ‘a‘. If b==0 the sampling is done with replacement, if b==1 - without (permutation).

Example

N/A

ReadDataFile

Batch language command
2/4/2004

Data file reading instruction.

DataSet datasetid = ReadDataFile(x);

The argument of the command designates the file to be read, and must be a string or one of the special values, listed
below.

The resulting data set is stored in the receptacle ‘datasetid‘. Upon successful completion of this command, ‘datasetid‘
contains the data, and 3 variables are automatically created and set:

54

1. datasetid.species
– number of species in the data set,
2. datasetid.sites
– number of sites(columns) in the data set,
3. datasetid.unique sites
number of unique sites (patterns) in the data set.

If ‘x‘ is set to ‘PROMPT FOR FILE‘, the user will be asked to specify the data file name at the time of execution.

If ‘x‘ is set to ‘USE NEXUS FILE DATA‘, (meaningful only within HYPHY NEXUS blocks), then the data from the
NEXUS matrix will be used.

‘x‘ must be given relative to the batch file which contains the ReadDataFile statement (or as an absolute path)

‘datasetid ‘must be a valid identifier (alphanumeric sequence with possible underscores beginning with a letter or an
underscore)

Sets IS TREE PRESENT IN DATA, DATAFILE TREE, NEXUS FILE TREE MATRIX (for NEXUS files),
DATA FILE PARTITION MATRIX.

Example

DataSet ds = ReadDataFile("../data/hiv.dat");

ReadFromString

Batch language command
9/15/2005

Construct a data file from a string.

DataSet datasetid = ReadFromString(x);

Effectively the same command as ReadDataFile, but the input is a string (not a file).

See comments for ReadDataFile

Example

dss = ">seq1 aaaaaaaa >seq2 cccccccc >seq3 gggggggg";

DataSet ds = ReadFromString(dss);

ReconstructAncestors

Batch language command
2/4/2004

Reconstructs the list of ancestral sequences based on current parameter values.
The sequences are reconstructed by finding the states of internal tree nodes which
maximize the likelihood of the tree.

55

DataSet datasetid = ReconstrucAncestors(likelihood function id);

1. ‘datasetid‘ is a valid identifier (alphanumeric sequence with possible underscores beginning with a letter or an
underscore).
2. ‘likelihood function id‘ must reference an already defined likelihood function.

For likelihood functions with rate heterogeneity, the most probable (in the posterior Bayesian sense) is first chosen for
every site.

Example

DataSet ds = ReconstructAncestors (likFunc);

ReplicateConstraint

Batch language command
2/6/2004

ReplicateConstraint exists to facilitate defining tree (or subtree) wide constraints.
It allows to replicate a single constraint throughout the matching parts of a tree
or several trees.

ReplicateConstraint ("constraint", argument 1, ..., argument N);

‘constraint‘ is a quotation-enclosed HyPhy expression, with several special properies:

1. ”thisK” (K is a number starting at 1) will be replaced with argument K. Therefore the number of arguments must
match the number of different ”thisK” in the expression. Please note that thisK identifier should NOT include any
underscores.
2. ‘¿ will be match any substring

‘argument K‘ must be a tree or a tree node.

Example

See examples in ‘Examples/ConstraintDefinition‘.

RerootTree

Built-in function
2/4/2004

Rerooting command

RerootTree(tree ident, branch name);

RerootTree (string ident, 0 - unused 2nd parameter);

1. Returns a string containing the Newick style string of the tree rerooted at the specified branch.

56

2. Can also be used to generate ”balanced” tree strings, i.e. reroot a tree in such a way as to balance the number of
nodes in each subtree. The latter functionality is useful for speeding up calculations on unrooted trees.

‘branch name‘ must be a valid tip or internal node name (a string), obtained by a call to ‘TipName‘ or ‘BranchName‘.
The call makes sense if the original tree was rooted.
”string ident” must be a string containing a valid Newick tree

Example

Tree tr = ((a,b),c,d);
newTr = RerootTree (tr, "b");

unbalanced tree = "(1,(2,(3,(4,(5,(6,7))))))";
rebalanced tree = RerootTree (unbalanced tree,0);

fprintf (stdout, " ", newTr, " ", rebalanced tree," ");

Rows

Built-in function
10/7/2004

The number of rows function and object counter. Also returns a vector of keys in
an associative array.

Rows(m)

1. m is a matrix:
– returns the number of rows in the matrix.
2. m is ”LikelihoodFunction”:
– returns the number of currently defined likelihood functions.
3. m is ”DataSet”:
– returns the number of currently defined dataset objects.
4. m is ”DataSetFilter”:
– returns the number of currently defined
5. m is ”Trees:
– returns the number of currently defined trees.
6. m is ”Variable”:
– returns the number of currently defined variables.
7. m is ”LAST MODEL PARAMETER LIST”:
– returns the number of parameters in the last defined model.
8. m is an associative array:
– returns a column vector of string keys into the array, in linear (unsorted) order.
9. m is ”UserFunction”:
– returns the number of user defined functions

Example

N/A

SCREEN HEIGHT

Constant
2/4/2004

The height in pixels of the display.

N/A

57

Set in calls to OpenWindow and can‘t be accessed independently. Currently only available in MacOS and Windows

Example

N/A

SCREEN WIDTH

Constant
2/4/2004

The width in pixels of the display.

N/A

Set in calls to OpenWindow and can‘t be accessed independently. Currently only available in MacOS and Windows

Example

N/A

SKIP OMISSIONS

Constant
2/4/2004

When true, any data sites which contain any characters w/o information (deletions)
are omitted from the dataset filters. Default is false.

SKIP OMISSIONS=0 or 1;

Deletions and N-fold ambiguities are NOT the same. Deletions map to NO character, while N-fold ambiguities imply
that there is a character there, but an unknown one.

Example

N/A

SelectTemplateModel

Batch language command
2/4/2004

Prompts the user to select a template model appropriate for the data contained in
‘filterid‘.

SelectTemplateModel(filterid);

‘filterid‘ must be an existing data set filter.

58

Example

SetDialogPrompt ("Please specify a data file:");
DataSet ds = ReadDataFile(PROMPT FOR FILE);
DataSetFilter filteredData = CreateFilter (ds,1);
SelectTemplateModel(filteredData);

SetDialogPrompt

Batch language command
8/17/1999

Used to set the prompt string presented to the user when PROMPT FOR STRING
or PROMPT FOR FILE is used.

SetDialogPrompt("string");

Prompt string must be less than 255 characters.

Example

N/A

SetParameter

Batch language command
2/4/2004

SetParameter is used to assign a value to a component of an object

SetParameter (object, parameterIndex, newValue);

1. ‘object‘ = RANDOM SEED
– ‘parameterIndex‘ = new value to assign the random seed to. (newValue is ignored - set it to 0).
2. ‘object‘ is a likelihood function
– numeric value is ‘newValue‘ is assigned to the independent parameter with index ‘parameterIndex‘.
3. ‘object‘ is a dataset
– string value (must be a valid identifier) is ‘newValue‘ becomes the name of the sequence with index ‘parameterIndex‘

Example

SetParameter (lf,index,someMatrix[index]);

Simulate

Batch language command
2/4/2004

Data file simulation without an existing likelihood function.

DataSet datasetid = Simulate(Tree, EF, Alphabet, Sites, <Ancestors, File Name>);

59

1. Tree:
– an existing tree variable with model definitions.
2. EF:
– the matrix of frequencies of characters at the root of the tree.
3. Alphabet:
– A matrix specifying the underlying data alphabet, in the following format:
** First row lists the characters in the same order they are used in the models
** Second row only has two first meaningful entries:
Characters per state (1 for nuc and a.a, 3 for codons)
Comma Separated list of excluded states (such as stop codons)
4. Sites:
– either a number of sites or a character string to assign to the root of the tree (that also determines the lenghts)
5. Ancestors (optional):
– Set to 1 to include ancestral sequences. Default 0.
6. File Name (optional):
– File name to write the data to - only works for simulations without rate categories. With this option, very little of the
data is kept in memory.

Example

F81M = {{*,t,t,t}
{t,*,t,t}
{t,t,*,t}
{t,t,t,*}};
eqf = {{0.4,0.1,0.2,0.3}};
Model F81 = (F81M,eqf,1);
Tree T = (Chimpanzee:0.0561983,Human:0.0411321,(Gorilla:0.0630279,(Gibbon:0.132441,Orangutan:0.0979926)Node6:0.053019)Node4:0.0143057);

characters = {{"A","C","G","T"}
{"1","","",""}};

DataSet sim = Simulate (T,eqf,characters,10000,1,"testData");

SimulateDataSet

Batch language command
2/4/2004

Data file simulation from an existing likelihood function.

DataSet datasetid = SimulateDataSet(likelihood function id, "comma separated list of excluded states",simulated

rates, category variable names);

The first argument of the call is an existing likelihood function. ‘Simulate‘ uses current values of parameters in the
function to simulate a data set of the same size/type as the one references by the function. If the likelihood function
references more than one data set, ‘SimulateDataSet‘ will work with the first data set reference, and all others which have
the same number of species/type. The second optional parameter is the list of states which are not permissible as the
result of simulation. Whatever states are included there will not be present in the simulated data. ‘datasetid‘ received
the simulated data.

‘simulated rates‘ (optional) - a matrix to receive simulated heterogeneous rates. The dimension of the matrix will be
KxN, where K is the number of category variables that the likelihood function depends; N is the total number of data
sites in the likelihood function. The entries in a column of the matrix will be the (randomly sampled) category variables
that the site depends on.

‘category variable names‘ (optional) - a string matrix, of dimension Kx1. The entry in row ‘i‘ is the name of the i-th
category variable.
Used in conjunction with ‘simulated rates‘.

datasetid must be valid identifier (alphanumeric sequence with possible underscores beginning with a letter or an
underscore).

60

likelihood function id must reference an already defined likelihood function.

Example

DataSet sds = SimulateDataSet(lf);
DataSet sds = SimulateDataSet(lf,"TAA,TGA,TAG");

Sin

Built-in function
2/3/2004

The sine function.

Sin(x)

1. x is a number:
– returns the sine of angle x (defined in radians).

Example

N/A

Sqrt

Built-in function
2/3/2004

The square root function.

Sin(x)

1. x is a non-negative number:
– returns the square root of x.

Example

N/A

TEXTreeString

Built-in function
2/4/2004

Returns a string containing a LaTEX picture description of the tree.

TEXTreeString(tree ident, parameter name);

61

‘parameter name‘ must be either an empty string (branches have equal lengths) or a parameter name (e.g. ”mu”), if that
parameter is defined for every branch. The length of the branches can be scaled on any model parameter (if it is defined
for all branches), or left unscaled (all branches have equal length).Two special values are also allowed:
1. ”EXPECTED NUMBER OF SUBSTITUTIONS”:
– scales the tree on the expected number of substitution per site, assuming there is a model attached to every branch of
the tree;
2. ”STRING SUPPLIED LENGTHS”:
– scales the tree on the lengths provided in the Newick string itself (assuming there are some).

The output of the command is LaTEX code which should be saved to a file and later rendered by a LaTEX program.

Example

Tree primates = (Gorilla:0.0575801,(Chimpanzee:0.05376,Human:0.0413699)Node3:0.0174714,(Gibbon:0.13899,Orangutan:0.100161)Node6:0.0530553);
tex1 = TEXTreeString (primates,"");
tex2 = TEXTreeString (primates,"STRING SUPPLIED LENGTHS");

TOKEN

Data File formatting instruction
2/4/2004

TOKEN sets up translation relations between characters.

$TOKEN:"new char"=meaning (new line char)

Note: this is NOT case sensitive. A new character can be anything, whereas the meaning is defined in terms of base set
chars.

Does not apply to NEXUS files (use EQUATE instead).

Example

$TOKEN:"B" = "CGT"
(B is either C, G or T)

Tan

Built-in function
2/3/2004

The tangent function.

Tan(x)

1. x is a number:
– returns the tangent of angle x (defined in radians).

Example

N/A

62

Time

Built-in function
2/3/2004

The timer function. Returns the value of the system timer in seconds.

Time(0 or 1)

1. The argument is 0:
– returns the number of seconds since a fixed past date (system dependent)
2. The argument is 1:
– returns system time used up by the HyPhy process since startup (reliable only on *NIX builds).

Example

/* To measure how long a sample operation takes */

timer = Time(0);
t = 1;
for (k=2; k<1000000; k=k+1)
{
t = t+Log (k);
}
timer = Time(0)-timer;
fprintf (stdout, " Time taken:", timer, " seconds ");

TipCount

Built-in function
2/4/2004

Returns the number of tips(leaves) in the tree.

TipCount(tree ident);

‘tree ident‘ must be an existing tree or topology variable.

Example

N/A

TipName

Built-in function
2/4/2004

Returns a string containing the name of a tip of the tree.

TipName(tree ident, tip index);

Valid index range is 0 to TipCount (tree ident)-1.

The name of the tip is of the form ‘Tip1‘ rather than ‘Tree.Tip1‘.

‘tree ident‘ must be an existing tree or topology variable.

63

Example

Topology tr = ((a,b),c,d);
tName = TipName (tr, 2);

/* Result: "c" */

Topology

Batch language command
2/4/2004

Topology construction command. Topologies are lightweight trees, i.e. the tree
structure with labels and associated parameters, but no associated model creation.

Topology treeid = X;

See notes for ‘Tree‘ for details.

Example

N/A

Transpose

Built-in function
2/3/2004

The matrix transpose function.

Transpose(m)

1. m is a matrix:
– returns the transpose m.

Example

N/A

Tree

Batch language command
2/4/2004

Tree construction command.

Tree treeid = X;

X can be either the identifier of an existing topology variable or a tree string is a in a parenthetical form (Newick
format), with the following extensions:

64

1. Internal nodes can be named by placing the name after ‘)‘ which closes the block of children of the internal node.
2. Each node may have its own model matrix. To attach a matrix to a node place ‘{matrix name}‘ after the name of the
node.

By default, each node will be associated with the last defined matrix.

If tree string is set to ‘PROMPT FOR STRING‘, the user will be prompted to enter the string.

Node names must be alphanumeric (‘ ‘ is allowed).
Rooted trees will be automatically ‘unrooted‘, unless ACCEPT ROOTED TREES is set to 1 before the call.
One branch trees are allowed.

Example

Tree tr = ((1,2),3,4);
Tree tr = ((1{M},2{M})Internal{M},3,(4,5));

USE DISTANCES

Constant
2/4/2004

When 1 (default) distance methods are used (when possible) to get intial parameter
value.

USE DISTANCES=0 or 1;

This option will only be applied to partitions with no more than 150 sequences. The actual procedure used is to use
HKY85 derived distance measure (for nucleotide and codon data), and least squares fitting of branch lengths to pairwise
distances.

Example

N/A

UseModel

Batch language command
2/4/2004

Used to select a model to be attached to branches of trees subsequently.

UseModel (model name);

‘model name‘ must be a
1. valid model defined previously with the ‘Model‘ command, or
2. USE NO MODEL - to reset the model used by default.

Example

See files in the ‘Examples‘ directory.

65

ZCDF

Built-in function
2/4/2004

Cumulative distribution function of the standard normal random variable

ZCDF (x)

1. ‘x‘ is a number:
– returns ZCDF(x) = P{N(0,1)<=x}, where N(0,1) is the standard normal.

Example

ZCDF(1.96)-ZCDF(-1.96)
/* returns 0.950004 */

[]

Operation
9/16/2005

Matrix or string element access operation. Also can be used to access subtrees.

Matrix Ident[row][column];
String Ident[position];
String Ident[start index][end index];
Topology ident[index];
Topology ident["Node Name"];

1. For strings, the [] operation returns the character at a given position in the string (indexed from 0). [] can also be used
to generate a substring of a given string.
2. In a matrix, can be used to access any given element, indexed by row and column position. Indexing starts at 0. For
row or column vectors single index will suffice, i.e. v[0][2] is the same as v[2] if v is a row vector.
3. If row == -1 or column == -1 for a matrix argument, returns a respective row or column (see example)
4. If ‘row‘ is a matrix of the same dimension as the matrix argument and ‘column‘ is skipped, then uses ‘row‘ as a
boolean extraction template
5. If ‘row‘ and ‘column‘ are both 1x2 matrices, extracts a rectangular block of elements.
6. For matrices, if ‘row‘ is a string, the string is parsed as a formula and executed for each entry in the matrix. Three
predefined variables are populated with appropriate values for each matrix entry:
– MATRIX ELEMENT VALUE
– MATRIX ELEMENT ROW
– MATRIX ELEMENT COLUMN

Remember that all indexing is ‘0‘ based. The original matrix is left intact, and a new matrix of the same dimension as
the original is returned, populated with the results of formula evaluations.
7. Due to an implementation bug (scheduled for a fix soon), nested indexing (e.g. m1[m2[1]]) is not properly parsed. Use
intermediate variables instead.

Example

/* String examples */
test string = "Hello cruel world";
test substring = test string[0][4];
/*contains "Hello"*/

See Examples/BatchLanguage/MatrixIndexing.bf for matrix access examples.

66

Raise

^ - LaTex can’t include this symbol in section titles

Operation
2/3/2004

Operation of raise to power or regular expression search and replace in strings.

xŷ

1. x and y are both numbers:
– raises x to power y, x must be positive or y must be an integer.
2. x is a string and y is a 2x1 matrix of strings
– searches for the regular expression defined in the first entry of y in x and replaces every found occurrence with the 2nd
entry in y (sorry, no back substituitons for now). Regular expressions are supported by incorporation of a C++ adapted
version of GNU POSIX compliant library http://www.gnu.org/directory/regex.html

Example

Sqrt(2)Ŝqrt(2)
/*1.63253*/
(-1.5)(̂-2)
/* 0.444444*/
(-1.5)(̂-1.5)
/*error*/

"abcbDbeb2bg"{̂{"b[a-z]"}{"-"}}
/*a-bD-b2-*/

break

Batch language command
2/4/2004

A loop termination command. When encountered within any for, while or do..while
loop, causes the execution of the loop to stop, and transfers control to the first
statement following the loop.

break;

A loop termination command. When encountered within any for, while or do..while loop, causes the execution of the
loop to stop, and transfers control to the first statement following the loop.

Example

for (i=5;i<100;i=i+1)
{
if (Random(0,i)>0.9*i)
{
break;
}
else
{
fprintf (stdout, " ",i);
}
}
fprintf (stdout, " ");

67

continue

Batch language command
2/4/2004

A loop ‘forward‘ command. When encountered within any for, while or do..while
loop, causes the rest of the commands within the loop to be ignored and forces
execution back to the beginning of the loop.

continue;

N/A

Example

for (i=5;i<100;i=i+1)
{
if (Random(0,i)>0.9*i)
{
continue;
}
fprintf (stdout, " ",i);
}
fprintf (stdout, " ");

do..while

Batch language command
2/4/2004

The ‘do..while‘loop. Cond is a logical expression. The loop is executed while Cond
evaluates to non-zero.

do{..body..}while(Cond);

The brackets must be included in the statement.

‘break‘ and ‘continue‘ may be used within loops just as in ‘C‘.

Example

do
{
i = Random (0,105);
fprintf (stdout, " ", i);
}
while (i>=0&&i<=100);

for

Batch language command
2/4/2004

The general ‘for‘ loop construct. Very much like the C ‘for‘. Init consists of
one statement (typically assignment). Cond is a logical statement (compound in
general). Incr is the statement executed at the end of each loop iteration.

for(Init;Cond;Incr){ ..body..}

Since ‘++‘ is not supported, statements like i=i+1 should be used in the Incr part.

68

Construcr for (..;..;..); is invalid, the {..body..} part must be present.

‘break‘ and ‘continue‘ may be used within loops just as in ‘C‘.

Example

mx = {61,61};
for (i=0; i<60; i=i+1)
{
for(j=i+1;j<61;j=j+1)
{
mx[i][j]:=a;
mx[j][i]:=b;
}
}

fprintf

Batch language command
2/4/2004

Output command. Can be used to print essentially any object to a file or to stdout
(console).

frpintf(filename or stdout or MESSAGE LOG, list of variables, expressions or string literals);

The first parameter is either a filename, given as a quote-enclosed path (absolute or relative to the file containing
‘fprintf‘) or stdout (console) w/o the quotes;
MESSAGE LOG can be supplied as the first argument to direct output to ‘messages.log‘ file.

Printing to a file will append rather than rewrite. The variable length list of parameters that follows can contain object
identifiers, expressions and quote-enclosed literals, as well as a special meaning constant CLEAR FILE (which erases
existing information in the file).

String literals may contain C-style ‘\code‘ control sequences, most notably: ‘\n‘ for new line and ‘\t‘ for tab.

Some objects only print to files due to large sizes.

‘filename‘ could be a string variable.

Example

x = 12;
fprintf (stdout, x, " squared is ", x2̂," ");

m = {{1,0}{0,1}};
fprintf (stdout, m);

fscanf

Batch language command
3/23/2004

Input command. Used to read values of numbers, matrices or trees from files or
the console.

69

fscanf(filename or stdin, format string, list of variables expressions or string literals);

The first parameter is either a filename, given as a quote-enclosed path relative to the file containing ‘fprintf‘ or stdin
(console) w/o the quotes. It could also be PROMPT FOR FILE if the user is to be prompted for the input file. Format
string is a quote-enclosed comma separated list with 5 allowed terms:

1. Number:
– read a number;
2. Matrix :
– read a matrix;
3. Tree:
– read a tree;
4. String:
– read a string;
5. Raw:
– place the previously unread contents of the file into a string.
6 Raw:
– split the previously unread contents of the file into strings and store them in a row vector. A line is terminated by
either , ,̊ o̊r .̊

Fscanf will skip all the characters in between meaningful input (except in ‘Raw‘ mode)

Matrices must enclosed in ‘{..}‘. Trees are enclosed in ‘(..)‘.

‘filename‘ can be a string variable.

Sets END OF FILE.

Example

/* given string:
0.12; {{0,1}{1,0}} sjdiwj ((1,2),3,4)
*/
fscanf (stdin, "Number,Matrix,Tree",x,m,t);
/*will read number .12 into x
matrix {{0,1}{1,0}} into m
and tree ((1,2),3,4) into t*/

function

Batch language command
2/4/2004

User defined function declaration.

function id (param1,param2,...,paramN) {...body...}

param‘s are passed by value - i.e. changes to parameters within the function will not affect the variables passed as
arguments.

To pass parameters by reference use ”param&” in function declaration and pass the name of the variable as a string.

Make sure the function has a ‘return‘ statement.

70

Example

function sqr (by value)
{
by value = by value * by value;
return by value;
}

function sqr2(by ref&)
{
by ref = by ref * by ref;
return by ref;
}
x = 2;
y = sqr (x);
fprintf (stdout, ," ", x, " ", y, " ");
/* 2 4, x didn‘t change*/

y = sqr 2("x");
fprintf (stdout, x, " ", y, " ");
/* 4 4, x did change*/

if..then..else

Batch language command
2/4/2004

Flow control statement.

if (Cond){..body1..} else {..body2..}

Cond is a logical expression. If cond evaluates to non-zero, body1 is executed, otherwise, if body2 is present, it is
executed (the ‘else‘ clause is optional).

The brackets {} must be included in the statement, even for single statement bodies.

Example

i = Random (1,100)$1;

if (i%2)
{
fprintf (stdout, " Generated an odd number ");
}
else
{
fprintf (stdout, " Generated an even number ");
}

return

Batch language command
2/4/2004

The ‘return‘ statement for user functions.

return object;

‘return‘ must be followed by an object (a constant, variable or formula), except when returning from the ‘main‘ function,
in which case the return value is optional.

Example

71

N/A

while

Batch language command
2/4/2004

The ‘while‘loop.

while(cond){..body..}

Cond is a logical expression. The loop is executed while Cond evaluates to non-zero.

The brackets {}must be included in the statement, even for single-statement bodies.

‘break‘ and ‘continue‘ may be used within loops just as in ‘C‘.

Example

i=0;
while (i>=0&&i<=100)
{
i = Random (0,105);
fprintf (stdout, " ", i);
}

{}

Batch language command
9/14/2005

Used to create empty associative arrays.

anArray = {};

An associative array (implemented as an AVL tree) is useful for storing (arbitrary elements) under a given key.

Any object which can be converted to a string may be used as a key.

Example

anArray = {};
anArray [1] = 3.14;

anArray ["A Matrix"] = {{1,2}};
anArray [{{1,2}}] = "A string";

fprintf (stdout, anArray);

72

||

Operation
2/3/2004

Operation of disjunction (logical OR) or regular expression matching

x||y

1. x and y are both numbers:
– if both arguments are 0 returns 0(false), otherwise returns 1 (true).
2. x and y are both strings:
– find all instances of the regular expression defined by y in x and return a column vector with 0-based match offsets.
{{-1}{-1}} is returned when no matches were found. Regular expressions are supported by incorporation of a C++
adapted version of GNU POSIX compliant library http://www.gnu.org/directory/regex.html

Example

"aabaaacaaadaaaae"||"a+[â]";
/* returns: */
{
{ 0}
{ 2}
{ 3}
{ 6}
{ 7}
{ 10}
{ 11}
{ 15}}
/* 0-2 is "aab"
3-6 is "aaac"
7-10 is "aaad"
11-15 is "aaaae" */

73

