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Abstract

Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope

and difficulty, whose ultimate goals — a cure and a vaccine – remain elusive. One of the fundamental

challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes

differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic

bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody,

are difficult to identify computationally. Drawing upon the open-source general-purpose machine learning

algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes) for learning

predictive models of viral phenotypes from sequences with known phenotypes. IDEPI can apply learned

models to classify sequences of unknown phenotypes, and also identify specific sequence features which

contribute to a particular phenotype. The program is written in Python, and designed to be flexible,

so that new machine learning methods and sequence features can be readily added to accommodate

various applications not necessarily limited to HIV-1. We demonstrate that IDEPI achieves performance

similar to or better than that of previously published approaches on four well-studied problems: finding

the epitopes of broadly neutralizing antibodies (bNab), determining coreceptor tropism of the virus,
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identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated

mutations.

Introduction

The challenge of predicting a viral phenotype from sequence data has many motivating examples in

HIV-1 research. In this work we restrict our attention to predicting binary phenotypes, e.g. resistant

vs susceptible. Perhaps the most established application is that of determining whether or not the viral

population in a particular host harbors drug resistance associated mutations (DRAMs) [1]. Algorithms

for inferring this from viral genotype alone (e.g. [2]) are well established and used both in research [3]

and in clinical practice [4]. These algorithms have been developed based on large training sets using

phenotypic assays, for example those measuring half maximal inhibitory concentration (IC50) of anan-

tiretroviral drug (ARV) [5]) to label sequences resistant or susceptible. For many ARVs, the genetic

basis of resistance is simple, and consists of specific point mutations [1], making it possible to distinguish

resistant viruses from their susceptible counterparts by the presence or absence of a specific residue or

a set of residues, leading to reliable prediction [6, 7]. For others ARVs including some protease, inte-

grase, nucleoside reverse transcriptase inhibitors, and co-receptor antagonists, the resistance phenotype

is defined by the interaction of many sites [8–12], or structurally [13, 14], presenting an opportunity to

continue methodological development (e.g. [15–17]).

Another popular prediction problem is that of determining which of the two cellular co-receptors

needed for HIV-1 fusion with the target cell and infection can be used by a particular viral strain. The

ability of a virus to bind CCR5 (R5-tropic), CXCR4 (X4-tropic), or either (dual-tropic) determines the

efficiency with which in can infect different types of target cells [18], predicts whether or not certain

ARVs will be effective [19], and impacts the course of disease progression [20]. The primary determinant

of V3 tropism is thought to be the third variable loop (V3) of the envelope glycoprotein (env) [21],

which spans approximately 35 amino-acid residues. Specialized assays can be used to determine the

tropism of a virus with a particular env protein [22], providing both the training sets and the gold

standard against which computational prediction methods can be compared [23, 24]. Starting with the

work by Fouchier and colleagues in 1992 [25], which used the computed total charge of V3 to derive and

experimentally validate the simple 11/25 rule (if residues at sites 11 and 25 are positively charged, then
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the virus is classified as X4 tropic), numerous authors have applied decision trees [26], random forests [27],

position-specific scoring matrices [28], support vector machines (SVM) [26], neural networks [29], Bayesian

networks [30], and hybrid models [31] to the problem. Various feature engineering approaches including

using structural information [32], electrostatic hulls [27], sequence motifs [28], positional and segment

residue frequencies [31] have also been attempted. At present the best methods achieve accuracy on the

order of 85% on comprehensive training datasets, thereby justifying ongoing research to improve this

value [33].

A different class of applications of machine learning techniques arises when researchers seek to infer

genetic “signatures” of HIV-1 isolates from different anatomical compartments (e.g. blood vs cerebro-

spinal fluid [34]), individuals with different clinical attributes (e.g. those with and without neurocognitive

impairment [35]), and different disease stages (e.g. acute vs chronic infection [36]). Once again, the

interest is both in prediction for unlabeled sequences, for example to modify treatment before impairment

occurs [35], and in finding predictive features, for instance to target vaccine research towards HIV-1 strains

that are more likely to establish new infections [36].

One of the most promising avenues of HIV-1 vaccine research provides our final example of genotype to

phenotype association problems, and the one that IDEPI was specifically developed to address. Rational

HIV-1 vaccine design has been greatly advanced by the isolation and identification of broadly neutraliz-

ing antibodies (bNab), typically from chronically infected individuals [37]. By definition, a bNab is able

to neutralize (in experimental assays) a large proportion of reference viruses (e.g. [38–40]), and under-

standing which epitopes are being targeted can reveal “conserved” elements shared by many circulating

viruses, and help design a vaccine which elicits responses to the same epitopes [41]. While powerful and

illuminating, current biochemical and structural techniques for mapping bNab epitopes (e.g. [39,40,42]),

are expensive, time consuming, and do not necessarily lead to good predictive models (e.g. [43]). The

appeal of computational epitope prediction lies in generating hypotheses for experimental validation,

and in high-throughput screening of sequences with unknown resistance phenotypes. Fortuitously, as

a byproduct of screening for bNab, large panels of phenotypic (IC50) and matched envelope sequences

have been generated, and several recent efforts [44–46] have been directed at applying machine learning

techniques to these data in order to predict the resistance phenotypes of HIV-1 strains, and to infer

antibody epitopes.

Given the clear utility, relevance, and popularity of tools for predicting viral phenotypes, under-
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standing sequence features that determine them, the continued development and refinement of ma-

chine learning techniques, and expanding training data sets, we designed IDEPI – a domain-specific

and extensible software library for supervised learning of models that relate genotype to phenotype for

HIV-1 and other organisms. IDEPI makes use of open source libraries for machine learning (scikit-

learn, scikit-learn.org/), sequence alignment (HMMER, hmmer.janelia.org/), sequence manipula-

tion (BioPython, biopython.org), and parallelization (joblib, pythonhosted.org/joblib), and provides

a programming interface to allow the users to engineer sequence features and select machine learning al-

gorithms appropriate for their application. Our original motivation for developing IDEPI was to predict

the epitopes of broadly neutralizing antibodies (hence the name), but we believe that the program can

find many diverse application in the field of HIV-1 research, and more generally for predicting discrete

phenotypes from genetic sequence data.

IDEPI is powerful and accurate: when we compare its performance with that of specialized tools

on four classes of problems outlined above, we find that even without feature and machine learning

method tuning, IDEPI closely hews to or even outperforms existing methods on the same data. IDEPI

infers biologically meaningful features: for each studied problem IDEPI identified many or most of the

genetic sequence features that have been previously shown to affect phenotype. IDEPI is convenient : by

standardizing data manipulation, e.g. aligning sequences to standard reference coordinates, extracting

features to be modeled, reading and handling phenotype annotation, and providing means to save learned

models and easily reuse them later, IDEPI can empower researchers interested in tackling new problems to

focus on innovation, instead of “plumbing”; IDEPI makes tasks like retraining a classifier on different data

sets trivial – something that is difficult to impossible to do with many published algorithms. IDEPI is fast :

automatic parallelization of independent tasks (e.g. cross-validation) on multi-core architectures greatly

accelerates model learning and performance evaluation; for the default linear support vector machine

(LSVM) classifier, classification of new sequences given a model can be done at a rate of 104 − 105

sequences per minute, making the program suitable for the analysis of next generation sequencing data.

IDEPI is customizable: different machine learning algorithms implemented in scikit-learn can be used;

new sequence features can be defined using a well-specified application programming interface (API);

various feature selection approaches (e.g. forward or backward selection) can be used; performance can

be optimized with respect to many metrics (e.g. sensitivity).
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Design and Implementation

IDEPI architecture and dependencies

IDEPI is implemented in the Python 3 programming language, and leverages open-source and community-

developed libraries to implement reusable functionality: BioPython for biological sequence data structures

and for parsers of FASTA- and Stockholm-format files; NumPy (numpy.org) and SciPy (scipy.org) for

vector, matrix, and other common numerical recipes; and scikit-learn (scikit-learn.org) for various

machine-learning functionality. When extending the facilities provided by these libraries, IDEPI pro-

vides compatible application programming interfaces so that its components are reusable and similarly

extensible.

IDEPI accepts two forms of input data – a specially-crafted SQLite database (sqlite.org) or a

combination of FASTA-formatted sequences with supplemental phenotypic data in comma-separated

value (CSV) format. These input data are transformed by IDEPI into a multiple sequence alignment

(MSA) using HMMER (version 3.1b1). Because the authors of HMMER recommend providing amino-acid

sequences to the program, IDEPI will by default translate the input sequences if they are determined to

have a DNA alphabet. A user-provided reference MSA is modeled by HMMER to guide the construction

of a MSA from the input data. Additionally, IDEPI includes a user-provided reference sequence in the

alignment to label the columns of the MSA in a conventional manner (e.g. N332 for an asparagine at site

332).

Feature extraction techniques included with IDEPI

For feature extraction, IDEPI provides four classes (all scikit-learn compatible) for the vectorization of

labeled MSAs: one for sequence identity at a given site (e.g. N301N), optionally reduced (e.g. Stanfel

encoding, N301[DENQ] [47]); one the for sequence identity at two sites within a specified radius (e.g.

N301N+S334S), also optionally reduced; one for the identification of sequence motifs describable by

regular expression (e.g. potential N-linked glycosylation sites (PNGS), using the regular expression

“N[ˆP][TS][ˆP]”); and another for motifs at two sites. For label extraction, IDEPI provides a class which

converts phenotype data to a form usable by scikit-learn.
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Feature selection and learning algorithms used by IDEPI

To enable rapid learning and prevent overfitting, IDEPI performs feature selection using the minimum

redundancy maximum relevance (mRMR) algorithm [48]. mRMR greedily chooses new features that are

maximally informative of our label while also minimally informative of already-chosen features. This is

implemented in the separate sklmrmr package, also scikit-learn compatible, and uses Cython (cython.

org) for high performance.

Default model learning is implemented using a soft-margin, linear support vector machine. The soft-

margin parameter, C, is chosen by (inner) grid search. Both of these functions are implemented within

scikit-learn, and parallelized when possible.

Tools included with IDEPI

IDEPI provides three scripts for end users not wishing to directly program their own pipelines. “idepi

discrete” accepts labeled sequence data and will generate a MSA from these data, extract features and

labels, perform N-fold cross-validation on models built from a pipeline of mRMR and soft-margin linear

SVMs, and finally report the models’ performance along with the labels of the most frequently selected

features and their relationship to the models (e.g. is the presence or absence indicative of the feature

indicative of an outcome). “idepi learn” will similarly accept labeled sequence data, learn a model, and

save it to disk for later use. Lastly, “idepi predict” accepts a saved model and some unlabeled data and

will predict its label. All the results presented in the manuscript have been generated using these three

scripts.

Extensible API for feature engineering

IDEPI defines a LabeledMSA class as a wrapper around BioPython’s MultipleSeqAlignment for the

column-wise labeling of a MSA. Together with classes facilitating alphabet encoding, IDEPI provides

simple facilities enabling rapid feature engineering for biological sequence data. Examples of how these

facilities can be used can be found within IDEPI’s source code – the SiteVectorizer and MotifVectorizer

classes for feature extraction. Additionally, motif features are trivially supported by the MotifVectorizer

class, which accepts a regular expression argument describing the motif. IDEPI uses this functionality to

extract features for putative N-linked glycosylation sites, using the regular expression described above.
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Results

Because IDEPI is designed to be an extensible general framework for predicting binary phenotypes, we

first tested it on simulated data, and well-studied problems of drug-resistance and tropism prediction and

detection of associated genetic features. The large number of published methods make a comprehensive

comparison infeasible, hence we selected methods based on their popularity, recency, performance, and

the availability of training data. IDEPI was evaluated for (i) its performance in phenotype prediction

using standard cross-validation metrics, and on previously published independent datasets; and (ii) the

veracity of inferred genetic features inferred to be informative of a particular phenotype. All the datasets

and instructions needed to run them with IDEPI are provided with the package distribution.

Simulated data

In order to establish baseline performance of IDEPI where the true “phenotype” is known we simulated

the evolution of N = 241 HIV-1 protein envelope sequences subject to a directional selective pressure

applied to sites in an epitope. For this moderate size data set (chosen to represent a typical bNab

training set), IDEPI performs very well (Table 1) overall, both in terms of classification performance,

and in recovering the locations/residue identity of epitopes. In the simplest case, when a single mutation

in a 5-site epitope confers resistance, IDEPI delivers Matthew’s Correlation Coefficient (MCC) of 0.98,

and recovers > 50% of sites within epitopes if they are sufficiently variable. Because positions in epitopes

are likely quite correlated, mRMR redundant feature selection explains essentially all the signal with a

median of 2 features per replicate. For a fixed training data set size, with the increased epitope length and

complexity, the performance degrades predictably, but MCC remains excellent for intermediate epitope

complexity (0.94) and good (0.78) for high epitope complexity. Encouragingly there seems to be no

undue false positive results due to phylogenetic relatedness of the samples: IDEPI yields a median MCC

of 0.04 (MCC of 0 corresponds to “no-better than random prediction” performance) for randomly assigned

phenotypes.

Drug resistance

We used a large publicly available data set associating viral sequences (reverse transcriptase) with

IC50 values for the PhenoSense assay (available from the Stanford HIV Drug Resistance Database,
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hivdb.stanford.edu) to train an IDEPI classifier for resistance to a non-nucleoside reverse transcrip-

tase inhibitor nevirapine (NVP). We chose this drug as a test case because (i) the basis for its resistance

is well understood making the assessment of IDEPI predictions easy; (ii) testing for NVP resistance is

biomedically relevant, for example in the context of preventing mother to child HIV-1 transmission; (iii)

a recent study [49] used resistance data from the Stanford database to train specialized classifiers for

NVP resistance providing a basis for comparison.

Using 80 features IDEPI achieves the same accuracy (0.92, Table 2) as a state-of-the-art custom-built

prediction tool using structural information [49]. The first three selected features (Table 3), correspond

to three canonical sites of strong phenotypic resistance, and the maintenance of the wildtype residue at

each of the positions is strongly predictive of susceptibility –a classifier built on just these three features

achieves MCC of 0.74, compared to that of 0.83 for the 80-feature model. Other genetic features implicated

in the development of NVP resistance recovered by the IDEPI model include major resistance mutations

K101P, K103N, V106A, Y181C, Y188L, G190A, and accessory/weak resistance mutations L100I, E138Q,

H221Y, and V108V, P236P (the latter two associated with susceptibly) [1].

We compared the SVM model learned by IDEPI against perhaps the most commonly used drug

resistance prediction algorithm –the Stanford HIVdb (expert curated, and evidence based) [2], using

a large dataset collected in Mexico for the purposes of drug resistance surveillance [50]. Because no

phenotype measurements were available for these sequences (as is common in practice), we computed

the degree of concordance between IDEPI and HIVdb using Cohen’s κ [51]. Since surveillance HIV-1

pol sequences are obtained from mixed viral populations and often contain ambiguous bases, not directly

handled by default IDEPI feature sets, we considered all possible amino-acid resolutions of nucleotide level

ambiguities at the positions involved in the model, and called a sequence resistant if any of the resolutions

were predicted as resistant. The two methods of resistance prediction were in excellent agreement overall

(κ = 0.85), including all cases of “highly-resistant” sequences, on par with the numbers reported in a

recent comparison of several rule-based resistance prediction algorithms [52].

Co-receptor usage/tropism

In 2010, Dybowski et al [27] presented a sophisticated multi-level classifier including structural and

biochemical properties of the V3 loop, performed extensive training and validation of their approach,

and compared it to previous work. Because a large training data set of V3 amino-acid sequences and
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associated phenotypic measurements was provided as a part of the publication, we were able to train an

IDEPI classifier on the same data to enable a direct comparison.

As has been documented before (e.g. [27]), most of the predictive power of V3 sequences is captured

by only a few features – in the case of IDEPI, a model using only two features already achieves an

MCC of 0.67, while the full model with 90 features improves it to 0.78. The first selected feature is a

potential N-linked glycosylation site (PNGS) at position 301; several sites in this 4-residue motif have

been implicated as critical to CCR5 receptor binding [53], hence a single composite feature is able to

encapsulate the discriminating positions for many sequences. The second feature is one of the two residues

in the 11/25 rule [25]; interestingly, the two positions are sufficiently correlated in the training sample

that mRMR feature selection eliminates position 25 once 11 has been included. IDEPI appears to be

surprisingly well suited to the problem of tropism prediction, and delivers nearly the same accuracy (0.94

vs 0.96, the latter number obtained in the original publication by tuning algorithmic cutoffs to maximize

accuracy on the training data) as the much more complex feature engineering approach undertaken by

Dybowski and colleagues. Furthermore, on an independent dataset, IDEPI attains accuracy of 0.905,

whereas the best of the 5 methods compared previously [27] attained accuracy of 0.86.

HIV-1 associated dementia

A recent comprehensive study by Holman and Gabuzda [35] applied a machine learning pipeline (based

on decision trees) to partial envelope sequences to identify signatures (defined as collections of residues or

biochemical properties at specific genomic positions) of sequences isolated from brain tissue of subjects

who developed HIV-1 associated dementia (HAD). Since the training set of sequences and corresponding

diagnoses has been kindly made available by the authors through the HIV Brain Sequence Database [54],

it was straightforward to apply IDEPI to the same data to learn a classifier. The Holman and Gabuzda

study also included an independent validation data set of 10 individuals diagnosed with HAD, and we

used it here to test the learned model.

IDEPI excels at this classification problem, with specificity and sensitivity exceeding 0.9, and accuracy

of 0.95. The original authors reported accuracy of 0.75, but their model was restricted to a subset of

the available sequence length, HXB2 coordinates 265-369. As with previous two applications, a single

prominent feature (T297K) attains MCC of 0.57; unlike the other problems, the next four features

appear to be of about the same informative content (based on the order in which they are selected in
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cross-validation folds), and MCC performance increases gradually as the features are added (Figure 2).

Interestingly, features reported as associated with HAD previously (see [35] for a summary), are not added

to the model until later: for example site 283 is the 8th ranked feature, site 308 – the 38th, and site 304 –

the 65th. Furthermore, the 90-feature IDEPI correctly classifies all 10 individuals in the validation data

set, whereas the original method correctly classified 8/10 cases.

Broadly neutralizing antibodies

Because IDEPI was designed with the specific problem of finding bNab epitopes and predicting the

resistance phenotype from sequence data, we compared its performance against three recently published

machine learning approaches to solving same problem.

1. Gnanakaran et al [44] proposed and tested an ensemble framework combining pattern analysis and

logistic regression to predicting the neutralization phenotype and mapping the epitopes of the b12

bNab [55] which targets the CD4 receptor binding site [56]. We used the genotypic and associated

phenotypic data from this paper to train and test an IDEPI classifier for the b12 bNab.

2. West et al [45] applied a direct optimization (implemented in the Antibody Database program

[ADP]) to predict the continuous IC50 value using sequence based features and applied in to data

from 25 antibodies. We compared the predictions derived by IDEPI models for some of the same

antibodies (chosen to represent one of the the remaining three types of bNab classified by their

targets [56]) using publicly available neutralization assay data, distributed with IDEPI, or the

training data set from [46]

3. Chuang et al [46] developed an epitope feature selection based on evaluating various measures

based on mutual information between sequence sites and IC50 values –an idea shared and extended

by the mRMR approach. We used the genotype and phenotype data for two of the antibodies

(8ANC131 and 8ANC195, the latter also studied by West et al) whose epitopes were mapped and

experimentally confirmed by Chuang et al.

b12 bNab prediction Unlike the previous three cases, b12 epitope prediction results in both a sim-

pler model (only 5 features) and a considerably lower performance (Table 2), with MCC of only 0.35.

Comparing IDEPI with the ensemble method developed by Gnanakaran et al [44], IDEPI achieves lower



11

accuracy on the training data (note that the original reference does not report a cross-validation value),

but higher accuracy on validation data (Table 4), suggesting that the ensemble model may have been

over-fitting the training data. Also unlike other classification problems, only a single residue (D185D,

Table 3) is supported by the majority of cross-validation folds. Taken together, these results suggest that

the training data set is too small (or that the feature set is suboptimal) to reliably identify the complex

structurally-defined epitope for b12, although IDEPI seems to outperform a previously published method

on an independent validation dataset, and its 5-feature epitope includes residue 424 which is a part of

the CD4 binding site [57] targeted by the antibody.

Other broadly neutralizing antibodies

1. PG9 is a broadly neutralizing antibody targeting the V1/V2 loop in HIV-1 env [58], whose canonical

epitope is anchored by the PNGS at position 160, which is also the single most important position in

the 30-feature model fitted by IDEPI. Due to the relatively small training data set (174 sequences),

an MCC of 0.42 is achieved, with the model showing fairly low sensitivity (0.49, Table 2). The 30

feature model has a remarkably high accuracy on the training data (0.96), but the small number

of resistant sequences in it makes it difficult to generalize the features past the N160 (Figure 2). A

direct comparison with West et al is difficult to formulate, because ADP’s performance is measured

by the proportion of IC50 variance explained by the model, which cannot be measured for IDEPI.

However, in terms of relevance of epitope features, IDEPI appears to produce a more useful result.

Indeed, it finds the three features found by ADP, but ranks them differently (more in agreement with

the structural studies): G732G (resistant, ADP: strong support, IDEPI: mean feature rank 18/30),

PNGS (N160) (susceptible, supported by structure [58], ADP: intermediate support, IDEPI: mean

feature rank 1/30), and K171K (susceptible, supported by structure [58], ADP: strong support,

IDEPI: mean feature rank 11/30). Further, IDEPI places another structurally confirmed residue in

the inferred epitope: V169E (resistant, mean rank 8/30).

2. PGT-121 is a broadly neutralizing antibody targeting glycans in the V3 loop [40]. IDEPI infers a

single feature model (Table 3), which associates the presence of a pair of PNGS (at positions 301

and 332) as strongly predictive (MCC=0.58) of susceptibility. Interestingly, while PNGS (N332)

is the key part of the canonical PGT-121 epitope, PNGS (N301) – previously thought relatively

unimportant – appears to act together with N332 to effect PGT-121 binding [59]. ADP predicts the
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importance of PNGS (N332), but also lists four other sites whose role in antibody-virus interaction

is unclear, and does not report N301 as important.

3. 10E8 is a broadly neutralizing antibody targeting the Membrane-Proximal External Region (MPER)

[60], showing unusual potency on the reference panel viruses. Because of this, the training sample

(Table 2) includes only 4% of resistant sequences, making meaningful learning difficult, as evidenced

by the low MCC of 0.23, and poor sensitivity. There are no top ranked features in the model (the

ranking changes significantly between cross-validations, Table 2), but one of the structurally de-

fined epitope sites (T676T) is included among the top 5, whereas ADP finds no such sites and also

performs poorly. The relevance of other inferred model features associated with resistance, e.g.

PNGS(T413+E824), K171E and E153Q is questionable, and larger training datasets containing

more resistant samples are needed for computational prediction to improve.

4. 8ANC195 is a broadly neutralizing antibody whose epitope has not been structurally confirmed

[61], but it was used a test case for computational epitope prediction and experimental confirmation

by two independent groups [45,46]. IDEPI achieves a good MCC of 0.67 on the training data from

Chuang et al, and does so with only two features in the epitope: two pairs of PNGS sites (Table 3).

The top feature is that the absence of either a PNGS anchored at site 234 or that anchored at

276 confers resistance. This single pair of PNGS subsumes three features (N234, N276, and T236)

experimentally validated by previous work. This example highlights that feature engineering (pairs

on PNGS) provides a more parsimonious and powerful model of neutralization that either single

PNGS [45], or single residues [46] can. The second feature selected by IDEPI is another pair of

PNGS (N160 and N230), which is predicted to confer resistance, and does so at a weak level [45].

5. 8ANC131 is a broadly neutralizing antibody whose epitope has been structurally mapped, but

not yet published [46], and the same authors performed computational prediction of epitope sites

and tested them experimentally. Unlike 8ANC195, where the epitope features are clean and ex-

perimentally confirmed, computational predictions have not been found nearly as useful, with the

top sites conferring only marginal resistance [46]. IDEPI finds a diffuse signal for 15 features (Fig-

ure 2, Table 2), and MCC of 0.19 (the lowest of all problems). There seems to be little overlap

between the features found in 3 or more cross-validation folds (susceptible: K151G, V169R, resis-

tant: N463K, D474N, PNGS(N339+Q442), PNGS(142a+N234)), and those reported by [46] [top 10:
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456,78,79,466,280,326,96,80,282,461] although many are in the same region of the three-dimensional

structure.

Availability and future directions

IDEPI and sklmrmr are installable via the PyPI Python package system, through all the standard tools

(easy install/pip), and their source code is available on GitHub (github.com/veg/idepi and github.

com/nlhepler/sklmrmr). A Virtual Machine for Oracle’s VirtualBox has also been built to provide easy

access to IDEPI for users unfamiliar with the intricacies of Python package management, and is available

from the main package distribution page.

IDEPI will likely be extended in the future to include a larger array of built-in feature extraction

mechanisms. In the future, we intend to release an update that includes a feature extractor that maps

sequence data to a provided structure to perform “patch analysis”. Downstream users that build novel

feature extractors are recommended to submit their creations to IDEPI, via GitHub’s pull request mech-

anism, for inclusion in a future release. Additionally, in providing APIs compatible with BioPython

and scikit-learn, IDEPI will prove ever more useful as advances are made in those fast-moving software

packages.

Supplementary Methods

Simulated data

We simulated the evolution of N = 241 HIV-1 protein envelope sequences subject to a directional selective

pressure applied to sites in an epitope using the HyPhy package [62]: the reference HXB2 sequence

was evolved along a phylogenetic tree representing the diversity of circulating HIV-1 group M strains

(inferred from biological isolates), subject to an HIV-1 specific substitution model [63], with site-to-site

substitution rate heterogeneity modeled by a 3-bin general discrete distribution [64]. The development of

resistance to a particular simulated epitope in a subset of sequences (defined as a set of positions in the

genome and “escape” residue), was modeled by accelerating the rate of amino-acid substitution towards

the escape residue along the terminal tree branch leading to a resistant sequence. For each replicate

(100 replicates per set), an epitope of desired complexity was generated (Table 1), and each simulated
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sequence was assigned a phenotype. We also performed a simulation where phenotypes were assigned to

sequences randomly, in order to establish the degree to which phylogenetic relatedness can drive spurious

associations due to the non-independence of samples [44].

Drug resistance

We labeled a sequence resistant to NVP if the measured fold change in IC50 was 5 or greater. A feature

was reported if it appeared were selected in 3 or more out of 5 cross-validation replicates. We investigated

the complexity of the genotypic basis of resistance by a simple grid search (the number of features was

one of the following values: 1,2,3,4,5,10,15,20,25,30,35,40,50,60,70,80,90,100 see Figure 2)

Co-receptor usage/tropism

The number of features maximizing 5-fold cross-validation MCC was determined by a simple grid search.

In addition to cross-validation performance metrics, we compared the performance of the IDEPI model to

the methods considered by Dybowski et al [27] on an independent validation dataset with 74 sequences.

Broadly neutralizing antibodies

IDEPI labeled sequences with IC50 of ≥ 20µg/ml for a given bNab as resistant, except for the 10E8

bNab(which shows unusually low titers for the reference panel), where the threshold was lowered to

5µg/ml. The number of features maximizing 5-fold cross-validation MCC was determined by a simple grid

search (as before, the number of features was one of: 1,2,3,4,5,10,15,20,25,30,35,40,50,60,70,80,90,100).

Computational Resources and Software Versions

All experiments were performed with IDEPI v0.17, sklmrmr v0.2.0, scikit-learn v0.14.1, scipy v0.12.0,

numpy v1.7.1, BioPython v1.62, and Python v3.3.3 on an Apple MacBook Pro (Quad-core 2.6GHz Intel

Core i7) running Mac OS X 10.9.1.
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of HIV-1 coreceptor tropism prediction by employing selected nucleotide positions of the env gene

in a Bayesian network classifier. J Antimicrob Chemother 68: 1471-85.

31. Kumar R, Raghava GPS (2013) Hybrid approach for predicting coreceptor used by HIV-1 from its

V3 loop amino acid sequence. PLoS One 8: e61437.

32. Sander O, Sing T, Sommer I, Low AJ, Cheung PK, et al. (2007) Structural descriptors of gp120

V3 loop for the prediction of HIV-1 coreceptor usage. PLoS Comput Biol 3: e58.

33. Low AJ, Dong W, Chan D, Sing T, Swanstrom R, et al. (2007) Current V3 genotyping algorithms

are inadequate for predicting X4 co-receptor usage in clinical isolates. AIDS 21: F17-24.

34. Pillai SK, Pond SLK, Liu Y, Good BM, Strain MC, et al. (2006) Genetic attributes of cerebrospinal

fluid-derived HIV-1 env. Brain 129: 1872-83.

35. Holman AG, Gabuzda D (2012) A machine learning approach for identifying amino acid signatures

in the HIV env gene predictive of dementia. PLoS One 7: e49538.

36. Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, et al. (2011) Recurrent signature

patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections.

PLoS Pathog 7: e1002209.

37. Burton DR, Weiss RA (2010) A boost for HIV vaccine design. Science 329: 770-3.

38. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and potent

neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:

285-9.

39. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, et al. (2010) Structural basis for broad and potent

neutralization of HIV-1 by antibody VRC01. Science 329: 811-7.



19

40. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization

coverage of HIV by multiple highly potent antibodies. Nature 477: 466-70.

41. Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, et al. (2012) A Blueprint for HIV

Vaccine Discovery. Cell Host Microbe 12: 396-407.

42. Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, et al. (2013) Structural

basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat

Struct Mol Biol 20: 804-13.

43. O’Rourke SM, Schweighardt B, Phung P, Fonseca DPAJ, Terry K, et al. (2010) Mutation at a

single position in the V2 domain of the HIV-1 envelope protein confers neutralization sensitivity

to a highly neutralization-resistant virus. J Virol 84: 11200-9.

44. Gnanakaran S, Daniels MG, Bhattacharya T, Lapedes AS, Sethi A, et al. (2010) Genetic signatures

in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS

Comput Biol 6: e1000955.

45. West AP Jr, Scharf L, Horwitz J, Klein F, Nussenzweig MC, et al. (2013) Computational analysis

of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues.

Proc Natl Acad Sci U S A 110: 10598-603.

46. Chuang GY, Acharya P, Schmidt SD, Yang Y, Louder MK, et al. (2013) Residue-level prediction

of HIV-1 antibody epitopes based on neutralization of diverse viral strains. J Virol 87: 10047-58.

47. Stanfel LE (1996) A New Approach to Clustering the Amino Acid. Journal of Theoretical Biology

183: 195 - 205.

48. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE

Transactions on 27: 1226-1238.

49. Ravich VL, Masso M, Vaisman II (2011) A combined sequence-structure approach for predicting

resistance to the non-nucleoside HIV-1 reverse transcriptase inhibitor Nevirapine. Biophys Chem

153: 168-72.



20
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Simulation L M Median performance metrics Mean epitope recovery, by class
Sensitivity Specificity MCC Features Slow, % Intermediate, % Fast, % FP

Simple 5 ≥ 1 0.98 1.0 0.98 2 11.1 56.6 80.0 0.09
Intermediate 8 ≥ 2 0.95 1.0 0.94 3 10.4 42.6 71.6 0.16
Complex 10 ≥ 3 0.85 0.98 0.78 3 6.0 39.4 58.3 0.16
Random N/A N/A 0.57 0.47 0.04 1 N/A N/A N/A 1

Table 1. IDEPI performance on simulated data, using forward feature selection (to optimize MCC),
and 10-fold nested cross-validation. L: the number of sites in an epitope; M: how many escape
mutations are needed to confer resistance; epitope recover classes are based on simulated evolutionary
rates; FP: mean number of selected features not in a simulated epitope; a feature was counted as
recovered if it were selected in 50% or more of cross-validation replicates.

Problem N B F IDEPI performance
5-fold cross-validation metrics Benchmark (IDEPI : ref)
Sens. Spec. Accu. MCC

NVP resistance 1461 62.3% 80 0.88 0.97 0.92 0.83 CV Accu. 0.92 : 0.921

V3 tropism 1356 15.1% 90 0.89 0.94 0.94 0.78 Training Accu. 0.95:0.962

Dementia 861 70.3% 90 0.96 0.93 0.95 0.89 CV Accu. 0.95:0.753

b12 bNab 247 64.4% 5 0.74 0.62 0.70 0.36 Training Accu. 0.75:0.86 4

10E8 bNab 178 4.0% 5 0.30 0.96 0.93 0.23 Training Accu. 0.96 vs proportion
of residuals explained 0.215

PG9 bNab 174 24.1% 30 0.49 0.89 0.79 0.42 Training Accu. 0.96 vs proportion
of residuals explained 0.315

PGT-121 bNab 118 37.2% 1 0.80 0.79 0.80 0.58 Training Accu. 0.80 vs proportion
of residuals explained 0.525

8ANC131 bNab 178 30.9% 15 0.51 0.69 0.63 0.19
8ANC195 bNab 178 42.7% 2 0.94 0.75 0.83 0.67 Training Accu. 0.83 vs proportion

of residuals explained 0.585

Table 2. IDEPI performance in predicting phenotypes from genotypes based on training data
analyzed previously. IDEPI metrics were obtained using 5-fold cross-validation. B (balance) is defined
as the proportion of “positive” training samples. The number of features (F) was chosen by selecting a
value from a pre-defined grid which maximized cross-validation MCC.
1 random forests trained on combined sequence and structural features using resistance classifications from the Stanford

Drug Resistance Database [49];
2 a two-level classifier combining random forest predictions based on an electrostatic hull and hydrophobicity features of

the V3 loop (680 features) trained on the same data [27];
3 a hierarchical decision tree classifier using composite amino-acid features trained on the same data [35].
4 an ensemble classifier using signature rules and logistic regression trained on the same data [44].
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Problem Features selected by IDEPI
Rank Identity Direction MCC Remarks

NVP resistance 1 K103K Susceptible 0.46 Canonical NNRTI resistance site [1]
2 Y181Y Susceptible 0.65 Canonical NNRTI resistance site
3 G190G Susceptible 0.74 Canonical NNRTI resistance site

V3 tropism 1 PNGS(N301) CCR5 0.55 Essential for CCR5 binding [53] and
dual-tropic viruses [65]

2 R306R CCR5 0.67 Part of the 11/25 rule [25]

Dementia 1 T297K Non-HAD 0.57
2 PNGS (N488) HAD
2 R298D Non-HAD
3 I320[] non-HAD
4 PNGS(T188) HAD 0.71

b12 bNab 1 D185D Susceptible 0.26 The strongest association found in
[44]

8E10 bNab 3-4 T676T Susceptible N/A A part of the structural epitope [60]

PG9 bNab 1 PNGS (N160) Susceptible 0.37 Key residue for binding based on
structure [58]

8 V169E Resistant Forms a hydrogen bond with PG9
[58]

PGT-121 bNab 1 PNGS(N301+N332) Susceptible 0.58 Both glycans are important for neu-
tralization [59]

8ANC195 bNab 1 PNGS (N234+N276) Susceptible 0.59 Encompasses the three mutants
(sites 234, 236, and 276) any of
which confers resistance [45,46]

2 PNGS(N160+N230) Resistant 0.67 PNGS at site 230 confers weak resis-
tance [45]

8ANC131 bNab 3.75 PNGS(N339+Q442) Resistant
5 K151G Susceptible

Table 3. Key features selected by IDEPI for each of the example problems. Notation: T297K means
that K is found in position 297 (HBX2 coordinates, T is the residue found in HXB2); PNGS (T188) – a
potential N-linked glycosylation site with N at HXB2 coordinate 188; PNGS (N234+N276) – a pair of
potential N-linked glycosylation site with N at HXB2 coordinates N234 and N276; [] – a deletion
relative to HXB2.

Problem Independent dataset
N Reference Benchmark Performance

NVP resistance 1639 [50] Stanford HIVdb Cohen’s κ = 0.85.
V3 tropism 74 [27] Best of 5 methods, including

SVM, decision trees, and position-
specific scoreing matrices [27]

Accu. IDEPI 0.91 vs 0.86

Dementia 10 [35] Ensemble of rule learning and de-
cision trees from [35]

IDEPI 10/10 vs 8/10

b12 bNab 55 [44] Ensemble of signatures and logis-
tic regression [44]

Accu. IDEPI 0.73 vs 0.61

Table 4. IDEPI model performance on independent datasets and comparison with benchmark
methods.
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Figure 2. IDEPI performance, measured by MCC, as a function of the number of model features


